学年

教科

質問の種類

数学 高校生

数1の2次関数の問題です。 もし良ければ ア、イ、オ、カ、キの問題の解説をお願いします🙏🏻🥺 答えは、ア,③ イ,-5<α<4 ウ,④ エ,③ オ,-aの二乗+a カ,-6 キ,-2<a<3 です!!

16 風早君と爽子さんが一緒に宿題で出た問題を考えています。 次の会話文を読んで, P.DE ア ウ I は選択肢から選び, イ オ カ まる式や値を答えなさい。 ( と エ 9 アの選択肢: ①:D> 0 9 (1) どんなxの値に対しても f(x) > g(x) が成り立つ -46- (2) どんな x1, x2 の値に対しても f(x1)> g(x2) が成り立つ。 ウと 【 宿題 】 2つの2次関数f(x)=x2-2ax+a,g(x)=−2x2+4x-8について、次の条件を 満たすように,定数aの値の範囲を求めよ。 H 9 キ はあては は同じものを選んでもよい) (ア): 1点, (イ) : 2点 (ウ) と ) 完答: 2点, (オ) ~ (キ) : 各2点 風早:(1) が成り立つためにはすべてのxの値に対して、f(x) - g(x)>0となればいいね! 爽子:そうか! y=f(x) - g(x) とおくと、 すべてのxの値に対して>0となるαの範囲を 求めればいいんだね。 風早 : そうだね。 f(x)-g(x)=0 の判別式をDとすると、 ア ア 爽子: を解いてみると….. 答えはイ だね。 (1) は解けたぞ! 風早 : やった! 次は (2) かぁ。 (2)は...(1) と何が違うんだろう? 爽子 : (1) は f(x)とg(x) に代入するxの値が共通だけど, (2) は共通とは限らないよ。 風早: 本当だ、 爽子さんよく気が付いたね。 ということは, (2) が成り立つためには (f(x)のウ)> (g(x)の エ)となればいいね! 爽子: f(x)の ウはオで,g(x)のエ はカだからオ 解けばいいね! 風早 : できた! 答えはキだ! となればいいんだよ。 > カを ②:D=0 ③:D<0 ③ :D < 0 ④:D≧0 ④ :D20 ⑤: D≤0 エの選択肢: ①: 軸 ②: 判別式 ③: 最大値 ④: 最小値

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
数学 高校生

高校生です 写真の問題の答えと過程を教えて欲しいです!

変化率は ア である。 また, これより関数f(x)のx=αにおける微分係数は f'(a) = lim ウ である。 35 関数f(x)=2x² について,次の問いに答えよ。 (1) 関数f(x) において, hが0でないとき, xがαからa+hまで変化するときのf(x)の平均 ア の解答群 0a+h ① 2a+h 2 2a + 2h (3 4a + 2h 4 2a²+2h (5) 2a² + 4h (ii) 点Qの座標は カ キ (iii) 直線の方程式はy=- (2) 放物線y=f(x) をCとし, C上に点P(α, 24 )をとる。 ただし, a>0とする。 REN 02 C上の点Pにおける接線を1とし、 直線とx軸との交点をQ, 点Qを通りに垂直な直線 をm,直線mとy軸との交点をAとする。 (i) 直線の方程式はy= I ax- オ²である。 I (v) T = √²{2x² - ( 1 ax ある。 の解答群 0 である。 ク ケ a (iv) 三角形 APQの面積をSとすると, S= -x+ コ サ a シ + である。 最重要 a スセ レベル ★★ ⑩ 四角形OQPA の面積 ① 曲線C及び直線! によって囲まれた図形の面積 ② x軸と曲線C及び直線によって囲まれた図形の面積 ③ y 軸と曲線C及び直線によって囲まれた図形の面積 ······ である。 ax- オ d2)}dx とおく。 T が表しているものは 時間 12分 ソ a³ (3) a>0の範囲における S-Tの値について調べてみよう (1) S-T=- () S-T>0となるようなαの値の範囲はテである。 の解答群 00<a< ③0<a< √3 4 @ 0<a< ²³/ © 0<a< ³/ >0であることに注意して S-Tの増減を調べると、 ト ナ = ヌネノ S-Tはα= + √√3 2 チツ である。 ①0<a< ④0<a< で最大値 √√6 4 /6 2 をとる。 別冊解答 p. 77 1 分法と積分法 アイウエオカキクケコサシスセソ タチツテトナニヌネノ 微分法と積分法 | 143

回答募集中 回答数: 0