学年

教科

質問の種類

数学 高校生

最後のd^2からdを考える際、X=3はそのままなのに、18は3‪√‬2になっているのは何故ですか?

18 基本 例題 67 最大 座標平面上で,点Pは原点Oを出発して, x軸上を毎秒1の速さで点 (6,0 0まで進む。この間にP, Q間の距離が最小となるのは出発してから何秒後 まで進み,点Qは点Pと同時に点 ( 0, -6) を出発して,毎秒1の速さで原点 か。また,その最小の距離を求めよ。 CHART & SOLUTION 基本 t秒後のP, Q間の距離をd とすると,三平方の定理からd=f(t) の形になる。ここで f(x)の最大・最小 平方したf(x) の最大・最小を考える d0 であるから,d=f(t)が最小のときdも最小となる。 解答 0≤1≤6 出発してからt秒後のP, Q 間の距 離をdとする。 P, Qは6秒後にそ れぞれ点 (6,0), (0, 0)に達するか ・① ら YA 6 x このとき, OP=t, OQ=6-t であ るから,三平方の定理により d2=12+(6-t)2 =2t2-12t+36 =2(t-3)2+18 tのとりうる値の範囲。 点Qのy座標は t-6 基本形に変形。 ① において, d は t=3 で最小値18 をとる。 d0 であるから,dが最小となるときdも最小となる。 よって, 3秒後にP,Q間の距離は最小になり,最小の距離は √18=3√2 軸t=3は①の範囲内。 この断りは重要! INFORMATION dの大小はdの大小から 例題では,d=√2+62 の根号内の a2+62 を取り出して まずその最小値を求めている。 これはd>0でd が変化す るなら, dが最小のときも最小になるからである。 右のグラフから, 大B2 (x≥0) d² A2 A≥0, B≥0, d≥0 * Ad≤B A²≤d²≤B² つまり,d≧0 のときdの大小はdの大小と一致する。 0 Ad B X 小 大

未解決 回答数: 0
数学 高校生

数学 一枚目が問題と解答で二枚目が自分の考えなのですが、解答は微分で考えてて自分は判別式で考えて答えは同じなのですが、いいのでしょうか?

要 例題 176 2 曲線が接する条件 「共 00000 2つの放物線y=x2 と y=(x-α)2 +2 がある1点で接するとき、定数α の値を求めよ。 CHART & SOLUTION [類 慶応大] 基本174 重要 177 2曲線y=f(x), y=g(x)がx=p の点で接する条件 f(b)=g(カ)かつf'(b)=g'(p) 「2曲線が接する」 とは, 1 点を共有し、かつ共有点における接線 が一致すること(この共有点を2曲線の接点という)。 接点のx座標をとおいて 接点を共有する ⇒f(b)=g(b) 接線の傾きが一致するf'(b)=g' (b) を満たすαの値を求めればよい。 解答 f(x)=x2, g(x)=(x-a)2 +2 とすると f'(x)=2x, g'(x)=-2x+2a 2曲線が1点で接するとき, その接点のx座標をとすると f(p)=g(カ) かつ f'(b)=g'(p) y=f(x)/ y=g(x) p x g(x)=(x-a)2+2 =-x2+2ax-a2+2 f(p)=g(p) が成り立つ。 接点のy座標が一致 よって2=(p-a)2+2 ① *S=V f'(p)=g'(p) Ch 2p=-2p+2a ② 接線の傾きが一致 ②から a=2p ③ 意味する これを①に代入してp=-(p-2p)+2 ゆえに P2=1 ③から,αの値はのと為 p=1のとき -2) これを解いてえにか=±10 α=-2, p=1 のとき a=2 式は a=-2 ly=f(x) 2=2+2から inf. 接点の座標は 275 xa=-2 のとき (-1, 1) y=f(x)+α=2 のとき (1,1) 接線の方程式は 左=2のとき y=-2x-12 x +a=2のとき -10 x の。 01 DS 方 y=g(x) y=g(x) 上の数 以上の 関数 方針 となり、方針図が開範囲が広いことが BACTICE 1769 .0=v - 1,0=D y=2x-1 24010

解決済み 回答数: 1
数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
数学 高校生

数学 答えと違うやり方でやった(二枚目)のですが、良いのでしょうか?k=1のときを考えてないからダメだと思いますが。。

要 例題 43 虚数を係数とする 2次方程式 00000] xの方程式(1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 (x-6)=(+x)([+x) (£) ひとすると 基本 38 73 判別式は係数が実数のときに限る DOから求めようとするのは完全な誤り(下の INFORMATION 参照)。(ど)。 実数解をαとすると (1+i)μ2+(k+i)a+3+3ki=0 RBORONE ns-e+x(S-D) (1) 2章 6 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により (1) a=0, 6=0 α, kの連立方程式が得られる。 る。 .... 解答 NEDOZEURS-50-DE) to (S) 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (a2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 a+bi=0 の形に整理。 α kは実数であるから, a2+ka+3, a2+α+3k も実数。この断り書きは重要。 よって ①② から ゆえに よって Q2+ka+3=0 _Q2+α+3k=0 ...... 2 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 複素数の相等。 ← α を消去。 infk を消去すると k=1 または α=30= (L-n) + α-22-9=0 が得られ, [1] k=1のとき ① ② はともに α2+α+3=0 となる。 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 これを満たす実数 αは存在しないから、不適 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 RS ←D=12-4・1・3=-11<0 ①:32+3k+3 = 0 ②:32+3+3k=0 [1] [2] から求めるkの値はk=-46 実数解は x=3 2次方程式の解と判別式 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b c が実数のときに限る。 例えば, α=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix'+x=0の解 はx=0, i であり、 異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 43° 0-6040-0 の方程式 (1+i)x²+(k-i)x-(k-1+2)=0 実数解をもつ #th to a litt

未解決 回答数: 0
数学 高校生

絶対値を含む方程式(場合分け)の範囲です。 1枚目2枚目のそれぞれ(2)の問題ですが、 X=1、-1を場合分けする際に 1枚目の時は(ⅱ)-1≦X≦1 2枚目の時は(ⅱ)-1≦X<1 なぜ一緒のこの2つ問題では符号が違うのでしょうか。 どういった違いがあるのでしょうか... 続きを読む

基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |.r-1|=2 |精講 |x+1|+|x-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 合はポイントⅠの考え方が使えるならば、 場合分けが けラクです. (1) (解I) 解 HO |x-1|=2 は絶対値の性質より1=±2 よって, x=-1,3 (解Ⅱ) -11={ c-1|= だから, x-1 D (x≥1) -(x-1)(x<1) i) x≧1のとき ① は x-1=2 x=3 これは,x≧1 をみたす. ii) x<1のとき ①は -(x-1)=2 :.x=-1 これは, x<1 をみたす. よって, x=-1,3 (2) i) x<-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)(x-1)=4 -2x=4 ... x=-2 これは,<-1 をみたす. i)-1≦x≦1 のとき +10, -1≦0 だから +1-(-1)- これをみたす (注)くのとき +1301>0 1ェー 28-4 ic これは、1<ェを (1) 甘)、血)より (2) A(-1). ら、②は 上の数直線により、 絶対値の 40となる で場合分 はじめにし た すかどう ① ェの値にかか ②x>1のとき (3) が大きくな くー1の ェが小さく ② ポイント いこと エック 演習問題 18 (1) ☆

解決済み 回答数: 1
数学 高校生

数学の文字入りの方程式の係数について質問です。 写真の(2)の問題が分かりません。 具体的には、 解答はa=0のときX=0になっていますが、 私はa=0のときXは全ての数だと思いました。 なぜならa=0のとき、Xに、どんな数を代入しても、答えがゼロになるのはかわりないと思... 続きを読む

00000 168 重要 例題 99 文字係数の方程式 α は定数とする。 次の方程式を解け。 (1) (a2-2a)x-a-2 (2)2ax²-(6a²-1)x-3a=0 7:52 重要 38, 基本 95 指針 (1) Ax=Bの形であるが, A の部分は文字を含んでいるから, 次のことに注意。 A = 0 のときは、両辺をAで割ることができない (「O で割る」ということは考えない。) ☆0で割れない A≠0, A = 0 の場合に分けて解く。 "STOP= (2) 問題文に「2次方程式」とは書かれていないから, x2 の係数が0のときとでない ときに分けて解く。 CHART 文字係数の方程式 文字で割るときは要注意 0で割るのはダメ! (1) 与式から 解答 a(a-2)x-a-2· ...... ① [1] α(a-2)≠0 すなわち a≠0 かつα=2のとき a-2 (*)(xの係数)=0のとき は,最初の方程式に戻って 考える 基本 (1) (ア) め 指針 x= a(a-2) 1 ゆえに x= a [2] α=0 のとき (*), ① から これを満たすxの値はない。 0.x=-2 [3] α=2のとき, ①から 0.x=0 これはxがどんな値でも成り立つ。 検討 Ax=B の解 A = 0 のとき A=0のとき ) B0 なら 0x=B 解はない (不能) B x= A a0 かつαキ2のとき 1 x=- B=0 なら 0x= 0 したがって a ← 解はすべての数 a=0のとき 解はない (不定) a=2のとき 解はすべての数 (2)[1] 2a0 すなわち α = 0 のとき, 方程式は すなわち,解は x=0 [2] α=0 のとき, 方程式から よって (x-3a) (2ax+1)=0 x=3a, - 1 2a a=0のとき x=0 x=0(x2の係数) = 0 のときは、 最初の方程式に戻って考 える。 <1 2a 2a -3a- -6a² X-30 1 → 1 -3a -(6a2-1) したがって 1 a≠0のとき x=3a, a≠0のとき 3 2a 解答

解決済み 回答数: 2