学年

教科

質問の種類

数学 高校生

182.2 k≦log10 N<k+1なので「ゆえに...」の部分を丁寧に書くと、 38.905≦log10 6^50<39より、38<log10 6^50<39であり、38.905≦log10 6^50<39の部分を解答では省略しているのですか? (38.905≦log1... 続きを読む

N<k logN<- 示し る。 基本例題 182 常用対数を利用した桁数, 小数首位の判断 ①①①①① logio2=0.3010, log103=0.4771 とする。 (1) 10g105, 10g100.006, logio√/72 の値をそれぞれ求めよ。 (2) 650 は何桁の整数か。 る。 1 / 2 \100 3 (3) HHOTTOMNE 指針 (1) 10 で, 10g10 2, 10g103 の値が与えられているから,各対数の真数を2,3, 10の累 乗の積で表してみる。 なお, 10g105の5は5=10÷2 と考える。 (2),(3) まず, 10g106% 10g10 を求める。 別解 あり 解答編p.181 検討 参照。 解答 を小数で表すと, 小数第何位に初めて0でない数字が現れるか。 scusa 01 p. 284, 2 「正の数Nの整数部分が桁⇔k-1≦loguN <k 正の数Nは小数第位に初めて0でない数字が現れる⇔-k≦1010N 【CHART 桁数,小数首位の問題 常用対数をとる 10 log. (1) 10g105=10g10=10g1010-logio2=1-0.3010=0.6990 logad = 10g100.006=10gio (2・3・10-3)=10g102+ 10g103-310g1010 = 0.3010+0.4771-3=-2.2219 ******** ゆえに logiu√72=10g10(23.32) 11 (310g102+210g103) 2 TOOTH ( 3×0.3010+2×0.4771) = 0.9286 (2)10g106505010g106=5010g10 (2・3)=50(10g102+10g103) 練習 ② 182 2\100 3 =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10650 <39 よって 1038 <650 <1039 したがって, 650 は 39 桁の整数である。 (3) logi()100- =100(10g102-10g103)=100(0.3010-0.4771) 3 =-17.61 -18 <10g10 10-18< 100 2 <-17 <-k+1 3388520T AT 383 ROKS <10-17 10g1010=1 [重要] 10g15=1-10g102 この変形はよく用いられる。 1√Ã= A ² 53.0 ならば, Nの整数部分は (k+1) 桁。 100 2 よって *< ( 1 ) ¹⁰° < ゆえに,小数第18位 に初めて 0 でない数字が現れる。100mgor (2) 10MN <10%+1 (3) 10 N10-k+1 ならば, Nは小数第位 に初めて0でない数字が現 れる 881 logı2=0.3010, logw3=0.4771とする。 15' は桁の整数であり, ( 2 3 ) 100 は小数第1 1位に初めて0でない数字が現れる。 p.294 EX118 章2 5章 32 常用対数

回答募集中 回答数: 0
数学 高校生

(2)の解説をお願いします。

共通テスト対策 数Ⅱ・B 第4回 ( )組 ( )番( sahkan 2 (1) 花子さんと太郎さんは,次の 【問題】 について話している。2人の会話を読んで、下> 1 を満たす定数と の問いに答えよ。 +2c-3=0 が表す円をC る。 この円を C とする。 (1) p=7 とする。このと s=アエー (i) 【問題】整式 P(x) を (x+1)2で割ると余りが2x+1, æ-2で割ると余りが14で ある。整式P(x) を(x+1)^(-2)で割ったときの余りを求めよ。 であるから, 円 C'の中 花子:P(z) を (æ+1)(x-2)で割ったときの商をQ(z),余りをaz²+bx+cとす (2) C'の半径をrとす ちから一つ選べ。 キ ると,等式P(z)=(x+1)^(x-2)Q(z) +ax+bx+cが成り立つね。 太郎 : あれ、x=-1, x=2を代入して, a, b,c の方程式を作ってもうまくい かないよ。 ⑩pの値が増加すると ① の値が増加する! 花子 : どうすればいいんだろう? ② の値に関わらず, (3)円 と円の共有 太郎:P(z) を (x+1)^ で割ると余りが2x+1 だから, ax2+bx+c=ア と表 すことができるよ。 1 <p <? DRAAGOZAA 0. GAA GAA カ=ク >ク アに当てはまる式を、次の⑩~④のうちから1つ選べ。 ① ax2+2ax+1 ②a(x+1)2 ⑩ az2-1 ③a(x+1)^-1 ④a(x+1)^+2 +1 (ii) a,b,c の値を求めよ。 α=イ |,b=ウ C= エ (2) 整式S(z) をx+2, (-1)(x+2)(x-5)で割ったときの余りをそれぞれd, R(x) と おく。 R(x)のxの項の係数が3であり,さらに, S(z) を (z-1)(z-5)で割ったとき の余りが5x+8であるとき, d = オカである。 an) 00 2=

回答募集中 回答数: 0
数学 高校生

183.1 10÷0.4771=20.95....となり、私は9を四捨五入して21.0...としたのですがこれでも大丈夫でしょうか??

286 SE 06 06 oras 0=8 基本例題183 常用対数と不等式180000 log103=0.4771 とする。 (1) 3" が 10桁の数となる最小の自然数nの値を求めよ。 00.0 orgol類 福岡エア 基本 18 (2) 3 進法で表すと100 桁の自然数Nを, 10進法で表すと何桁の数になるか、 指針 (1) まず, 3" が 10桁の数であるということを不等式で表す。 (2) (2) 進数Nの桁数の問題 不等式ん桁数-1≦N <h桁数の形に表す helbu ・・・・・・・・・改訂版チャート式基礎からの数学A 基本例題142 10年 3100-1≤N<3100 に従って、問題の条件を不等式で表すと 解答 (1) 3” が10桁の数であるとき 各辺の常用対数をとると ゆえに 10進法で表したときの桁数を求めるには, 不等式 ① から, 10″-1≦N <10" の形を たい。そこで,不等式 ① の各辺の常用対数をとる。 練習 183 9≦ 0.4771n<10 9 0.4771 10°≦3" < 1010 内 9≤n log103<10 よって ≤n<. したがって 18.8......<n<20.9...... この不等式を満たす最小の自然数nは n=19 Gorg (2) Nは3進法で表すと100桁の自然数であるか 3100-1N < 3100 すなわち 399 ≦N < 3100 各辺の常用対数をとると 1.005018 to 9910g 10 3 log10 N <10010g103 99×0.4771 ≦10g10N <100×0.4771 10 0.4771 ゆえに すなわち 47.2329 ≤log10 N<47.71mol)08 (8-8) 3 よって 1047.2329 ≦N < 1047.71 100.4771=3 ゆえに 1047 <N<1048 したがって,Nを10進法で表すと, 48 桁の数となる。 別解 10g103=0.4771 から ゆえに, 3% ≦N <3 100 から よって 1047.2329 ≦N < 1047.71 ゆえに (100.4771) 99 ≤N<(100.4771) 100 1047 <N < 1048 したがって, N を 10進法で表すと, 48 桁の数となる。 Nがn桁の整数 Saigof-Oこの不等式を満たす自 =(n=19, 20 であるが、 「最小の」という条件があ るので, n=19が解。 10'<10" LIO8OXE) gol (Ful 0108.0008 p=loga M⇒a=\l Dode= 10g102=0.3010, log103 = 0.4771 とする。 (1) 小数で表すとき, 小数第3位に初めて0でない数字が現れるように 自然数nは何個あるか。 (2) 10gs 2 の値を求めよ。 ただし, 小数第3位を四捨五入せよ。 また、この結果 利用して, 4'°を9進法で表すと何 基礎 AH 比べ 初め log 指針 Col 解 現在の とする 両辺の 40 ここて よって ゆえに したか 練習 ③ 184

回答募集中 回答数: 0
数学 高校生

175.3 訂正後の記述に問題はないですかね??

例題165同様、 け平行移動したもの フと対称 フと対称 フと対称 昇する。 軸との交点の (真数) = 1 とすると, x+3=1から x=-1 logeb logea logab=i oga MN=loga Me 軸との交点の x-8-1から log, (4x-8) 基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。説明 (1) 1.5, log35 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき0<b<glogap<logag AUTO 大小一致 関係をいた 0<a<1のとき 0<p<glogp>logaq -------------- に関する箇所 ージで触 CHART 対数の大小 底をそろえて 真数を比較 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し,底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 (3) 4数を正の数と負の数に分けてから比較する。 ・........ 0 また, 10g32, 10g52の比較では, 真数がともに2であるから 底を2にそろえると考えやすい。 解答 0x T (1) 1.5 = 3 3 2 = -log33=log3 32 また (32)=3327>52 & 底3は1より大きく35であるから したがって ( 22210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから log33ž>log35 1.5 >log: 5 すなわちょ<0.2 x 1218 同値では10g232 log49= ED ECC =10g23 log23<log24 <log25 すなわち 10g9 <2<log25 (3) 底0.5は1より小さく,3>2>1であるから H logo.53<logo.s2<0 (175 1 log23' すなわち したがって log22² 6-1 log32= log52= 1 <3 <5であるから 0<log23<log25 moke (Fall-colto 13___1 よって 0< log25 で,底2は1より大きく log25 log2 3 2175 (1) log23, log25 はな よいお願 0<log52<log32 logo.53 <logo.52 <logs 2 <logs2 10gag log.pt 0 ye 次の各組の数の大小を不等号を用いて表せ。 10144 p y=logaxのグラフ a>1 q x y 0<a<1 logap OP loga q 底はそろえよ 1 9 <A > 0, B>0ならば A>B⇔A'>B' 底の変換公式。 のように 不等号の向きが変わる。 指針のy=10gaxのグラフ から, 0<a<1のとき α>1 のとき 0<x<110gax<0 x>1⇔10gax>0 0<x<1⇔loga x>0 x>1⇔logax < 0 Op.293 EX113, (2) logo.33, logo.35 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0