学年

教科

質問の種類

数学 高校生

この問題って右下にあるように定数分離を使っても解けると思うのですが模範解答の解き方も覚えないといけないですか? 定数分離の方が自分的にやりやすいのでもし覚えなくて良かったらその方法だけでやりたいです。

4 第4章 三角関数 Think 10/17x **** 例題 152 三角関数を含む方程式の解の存在条件 OOT とする. 0 の方程式 cos20+asin0+a=0・・・・・・① を満たす 0 が存在するための定数αの値の範囲を求めよ. ( 岩手大・改 ) [考え方 sing とおくと、2倍角の公式を利用して、1の2次方程式として考えることがで きる。 (0) f(1) が同符号のとき f(t) のの係数が正より 区間 ②で③が実数解をもつための条 件は, f(0)>0 かつ f(1)>0 かつ f(t)=0 の判別式をDとすると. D≧0 かつ y=f(t)の軸が区間内 つまり、tの2次方程式の解の存在範囲の問題となるので 2次関数のグラフと軸の である. 共有点を考えるとよい. f(0)=a-1>0より, 解答 a 3 三角関数の加法定理 295 f(0) <0. f(1) < 0 の場合は区間内に解 をもたない。 17 0 a>1 ...... ④ f(1)=2a+1>0より 1 a> 2 8 t D=α-8a +820 より a≦4-2√/24+2/2≦a .......⑥ a-8a +8=0. 4=4+2/2 のとり得る値の範囲に注意しながら、 実数解 tの存在範囲を調べればよいが,そのと 上のようにいろいろな場合が考えられ、場合分けの必要がある場合分けをする ときの着眼ポイントは、「区間の端点の符号」,「軸と区間の位置関係」 「判別式(また は2次関数のグラフの頂点のy座標)」 である. t = sin0 とおくと,00πより 0≦t≦1 .....・・ ② cos20=1-2sin'0=1-2F より ①に代入して, -(1-2f2) + at + α = 0 つまり、 2f+ at+a-1=0 ...... ③ したがって、 ①を満たす 0 が存在するための条件は,区 間②において,tの2次方程式③が少なくとも1つの実数解 をもつこと, つまり ③より f(t)=21+atta-lとお とy=f(t)のグラフが区間②でも軸と少なくとも1つ の共有点をもつことである. (i) (0) (1) が異符号のとき つまり,f(0)f(1) <0 のとき f(0)=a-1 f(1)=2+a+a-1=2a +1 したがって, (a-1)(2a+1)<0 よって、12<a<1 -4<a<0 ......⑦ 軸はto より <<1 4 つまり. 以上(i)~(i)より,求めるa の値の範囲は したがって、④~⑦を同時に満たすαの値は存在しない。 ≦a≦1 Focus 最終的に2次関数の 解の存在範囲における場合分け 48 する。 問題として捉えるこ とができるかがポイ ント 区間の端点の符号で 場合分けを考える. (注)を参照) f(0)>0,f(1)<0 または, f(0) <0. f(1)>0 より 1 t f(0) f(1)<0 f(0)=0 のとき, す でに f=0 が③の解 となるのでf(1) の符 よって a= =1/12 または a=1 号は関係ない. () f(0)=0 または f(1) = 0 のとき つまり,f(0)f(1)=0 のとき (a-1)(2a+1)=0 f(t) =2f+ at+a-l =21++ 第4章 「区間の端点の符号」 「軸と区間の位置関係」 「判別式(または2次 関数のグラフの頂点のy座標)」に着目せよ! 注〉 例題152で 「区間の端点の符号」で場合分けを行ったのは, (i) や (i) の場合は端点の符 号を調べれば,軸や判別式を調べなくても、題意を満たす αの値の範囲を調べること ができるからである. このことは, Focus Gold 数学Ⅰ+Aの第2章 「2次関数」 で学んだ 「解の存在範囲」 の問題と関連している. 注) 「定数分離」という着眼から, 例題152を次のように解くこともできる. 2t2+ at+a-1=0 より 2t-1=-at-a g(t)=2t-1.h(t)=-at-a とすると, ③を満たす が区間②内に存在するのは, y=g(t) と y=h(t) が区 間②において共有点をもつ場合である.このとき, h(t)=-a(t+1) より,y=h(t)は定点(-1, 0) を通 る直線であるから, 右の図より、共有点をもつのは, -15-as y=g(t) 1 =h(t) (0, -1) を通る直線から, より、 1/2sas1のときである。 (1,1) を通る直線まで変化する. 練習 152 とする0の方程式 sin' +acos0-2a-1=0………① を満たす 0 (同志社大 改)

解決済み 回答数: 2
数学 高校生

最大、最小の問題についての質問です。紫のアンダーラインを引いたところにxは実数よりとあるのですが、xは実数とは問題分のどこにも書いていない気がします。どこからこれが出てきたんでしょうか?

Focus 106 第2章 高次方程式 Think 例題 49 判別式による最大・最小 **** x-1 x2+3 の最大値、最小値と,そのときのxの値を求めよ. 考え方 与えられた式を「=k」 とおき 式を整理する。 (次ページ 「Story」 参照 ) xが実数である条件から、判別式 D≧0 を利用して, のとる値の範囲を考える. なお、式を整理した後(i) = 0.) k0 で場合分けをする。 解答 x-1 =k とおく x2+3 (整理した式は2次方程式とは限らない) まずは,「=」と < +30より両辺に+3 を掛けて, x-1=k(x2+3) kx2-x+3k+1=0 ...... ① (i) k=0 のとき 今の 2次方程 とは限らない . x+1=0 より x=1 (i) = 0 のとき xは実数より 2次方程式 ① は実数解をもつ. よって、 2次方程式①の判別式をDとすると, D≧0 D=(-1)2-4k(3k+1) 86=-12k²-4k+1 したがって, -12k2-4k+1≧0 D≧0 となり, ①が 実数解をもつんの値 の範囲を求める。 12k²+4k-1≦0 (2k+1)(6k-1)≦0 k=1/2のときより、x= =3 2k 1 2k よって, 最大値1/(x=3のとき) *0.-≤k≤ (k=0) したがって、(i), (i)より、12ks/ k=-1/2 のとき,①より、x= -=-1 kの値の範囲より、 最大値,最小値を求 める. k=- 1のとき. 2'6 D=0 より ①は重 解をもつ. 最小値 12 (x=-1 のとき) ax+bx+c=0(aq=0) b 重解はx=- 20 (与えられた式) xが実数であることから, とおき, 判別式 D≧0 を利用する 練習 2(x-1) 49 **** -2x+2 の最大値、最小値と,そのときのxの値を求めよ.

解決済み 回答数: 1
数学 高校生

高次方程式についての質問です。紫のアンダーラインを引いたω*2+ω+1=0には何故のこの式が成り立つのかの証明がなかったのに、ω*3=1は何故式の成り立ちが証明されているのでしょうか。二枚目は一問前の問題で、これには、性質についてまず証明しろと書いてあります。何故ω*2+ω... 続きを読む

1の3乗根の虚数のうちの 「解答 これから使う性質に ついてまず証明して おく. ***** ■よ.ただし,n は整数と 1 1)2-1 (岡山県立大改) コ) = 0 より wはx=1 の解 例題 56 x'+x+1による割り算の (1) a, b が実数, zが虚数のとき を証明せよ. a+bz=0 a=0 かつ b=0 3 高次方程式 119 **** (2)x+2x+3x²+5x-1をx²+x+1で割ったときの余りを求めよ. 考え方 (1) a+bz=0 a=0 かつ b=0 の証明は背理法を利用する。 (2)方程式+x+1=0の解をするとは虚数でww+1=0.ω=1 で ある あわせて (1) の証明結果を利用して余りを求める。 (1)(i) a+bz=0a=0かつb=0を証明する b=0 と仮定すると, a+bz=0 より z=- a ……………① となる. b だから ここで,a,bは実数より も実数 とは よって, a=0 | 2004 3×668 ω=1 が利用でき るように変形する 通分する a+bz=0 q=0 かつ b=0 以上より, a=0 かつ b=0 このようなときは なっ 実数 (9)9 与式に代入できるよ うな2種類の変形を 行う. しかし、2は虚数であるから、①の成立には矛盾がある。 b=0 b=0 を a+bz=0 に代入すると したがって, a, b が実数, z が虚数のとき. よくいくとは限らな a+bz=0は明らかに成り立つ が虚数のとき a+bz=0a=0 / b=0= (2)x+2x3+3x²+5x-1 を2次式x'+x+1で割ったときの商をQ(x),余り 1次以下の多項式mx+n(m,nは実数) とすると,(土)1 x+2x'+3x²+5x-1 = (x2+x+1)Q(x)+mx+n .....① 方程式 x'+x+1=0の解をωとすると, ω は虚数で。。 ω'+w+1=0である。 ①の両辺にx=w を代入すると, +2ω°+3ω°+5ω-1=(ω^+w+1)Q(ω)+mw+n ここでω-1=(ω-1) (ω'+ω+1)=0 より また, =1 e=e=e④しいにきたから、今はどの ω'+w+1=0 より ω=-ω-1 ...... ⑤ ずは (w+1)24-1 考える. -1は奇数より 2-1-1 を使えるよう よって、②は,③~⑤より, - を分ける. で整理すると, (n+2)+(m-3)w=0 17+18 とする. 練習 2 3 第2章 w+2×1+3(-w-1)+5w-1=mw+n ここで,m,nは実数であるから, n+2m-3も実数, また, は虚数 したがって,(1)の結果から, n+2=0,m-3=0 つまり、 m=3.n=-2 報によって、 求める余りは, 3x-2 (1)x100-1 を x'+x+1で割ったときの余りを求めよ. 56 (2)x+ax+bx+cx-1で割り切れるとき,実数a,b,c の値を求めよ. *****

解決済み 回答数: 1
数学 高校生

高次方程式に関して、紫で囲ったところについての質問です。まず、各項とも3次以上であると書かれているのですが、項は一つしかないと思います。どれらの項のことを各項と言っているのですか?また2次以下の項の係数を比較してとあるのですが、三次以上の項を無視できるのは、②の式がt(x)... 続きを読む

116 第2章 高次方程式 Think 例題 54 剰余の定理(2) [考え方 解答 **** (1)nを3以上の自然数とする.x" -1 を (x-1)3で割ったときの余り を求めよ. (2)x2+x15 +1 を x+1で割ったときの余りを求めよ. (1)x1=(x-1) Q(x)+ax²+bx+c このままでは何もできないので,x-1 が式変形でき ないか考える(x-1) に着目して, x-1 =t とおく x1 =t とおくと, 二項定理が利用できる. (二項定理については, p.21参照) (2)x=iで x2+1=0 となる. 実数係数の多項式の割り算での余りは実数係数の多 式である。 (1)3次式(x-1)で割ったときの商をQ(x) とすると,余りは 2次以下の多項式であるから、余りはax+bx+c とおける よって、 (t+1)-1=fQ(t+1)+α(t+1)+6(t+1)+c ...... ② 3次式で割るの で、余りは2次 以下の多項 解 Comme 1の の解で つまり この とす x-1 =t とおくと, x=t+1 より ①は, x-1=(x-1)2Q(x)+ax²+bx+c ②の左辺に二項定理を利用すると, (左辺)=,Cat+mCt' "Cat+„Caf'+nCit+"Co-1 =,Cat*+,C, "'++,Cf+n(n-1)t 2+nt ③ 2 C22 C=n n(n-1) n Co=1 また、②の(右辺)=Q(++1)+of+ (2a+b)t+a+b+c 多項式・Q(t+1)は各項とも3次以上である. ③④の2次以下の項の係数を比較して, ④4) とな a n(n-1) a= 2a+b=n,a+b+c=0 2 これらから a=- _n(n-1) b=-(n-2n),c=- n2-3n 余りは2次以 なので2次以下 の項のみに着目 する。 れる d 2 2 練習 よって, 求める余りは, n(n-1)x-(n²-2n)x+ 2 n²-3n 2 (2)2次式x+1で割ったときの商をQ(x), 余りをax+bとおく . x2 + x15+1=(x2+1)Q(x)+ax + b(a,bは実数) が成り立つ. これは恒等式であるから,両辺に x=i を代入すると, 1+1+1=(i+1)Q(i) + ai + b ... ① i=-1,=(i) =1, i=(i).i=-i より ① は, 2-i=b+ai となる. a b は実数であるから, よって、求める余りは, 注)微分法(第6章) を学習すると *** (6) *****, 54 **** a=-1,b=2 x+2 余りは1次以下 の多項式 =√-1 複素数の相等よ り 辺を微分した式も恒等式であることから,a,b,cの値を容易に求められる. xの恒等式 x-1=(x-1)Q(x)+ax²+bx+cの両 (1)を2以上の自然数とする.x" を (x-2)2で割ったときの余りを求めよ。 (2)2x'+x+1 を (x+1)(x-1)で割ったときの余りを求めよ. を

解決済み 回答数: 1
数学 高校生

二次関数についての質問です。⑸で何故D>0の条件が書かれていないのか分かりません。⑶で不必要な理由はわかりますが、何故⑸でも不必要なのでしょうか?

104 第2章 高次方程式 Think 例題 48 2次方程式の解の存在範囲 **** 大阪届いての2次方程式」がどのような異なる2つ (3) 異符号(1つが正で,他が負) の実数解をもつとき、定数りの値の範囲を求めよ。ただし、わは実数とする。 (1) ともに正 (2)ともに (4) ともに1より大きい (5) 1つは1より大きく、他は1より小さい 考え方 2次方程式の異なる2つの実数解 α β について, (1)α,βがともに正⇔D>0, α+3>0.3>0 (2)α,βがともに負⇔D>0.α+β<0,aβ>0 ⇒ aβ<0 α β 符号 (3) (4) α. βがともに1より大きい⇔D>0 (α-1)+(β-1)>0, (α-1) (3-1)>0 (5) αβのうち、1つは1より大きく, 他は1より小さい 解答 x-2px+p+6=0の解を α β とする. α+β=2p, aβ=p+6 解と係数の関係より [[]] A (1) 2次方程式 x 2px+p+6=0 の判別式をDとす ると,α. β は異なる2つの実数解であるから,D>0 である. p²-(p+6)=p²-p−6=(p+2)(p−3) D 4 (p+2)(3)>0より (a−1)(8-1)<0 α β は実数 a+ß>0, aß>0€ Focus より (a- (a よって 3 a. B (5) さいとき ( よって 2次方 25555 8 a, α, a, p<-2, 3<p......① あっても,α,βが実数 とならない場合(たとえ ば a=1+i, ß=1-i) があるので,D>0の条 件が必要である. a. α+β=2p>0より, >0 ② 注〉x2-2px y=x'+ aβ = p+6>0 より よって ① ② ③より, p>3 p>-6 ③ ③ (2 ① -6 -2 0 このこ 実数解 (1) α. βがともに正より,α+β>0,αB>0 3 p (2) α β は異なる2つの実数解であるから, (1) より p<-23<p ......① α βがともに負より, α+B<0.a>0 α+β=2p<0 より, 38 aẞ=p+6>0. p<0 ・・・・・・② p-6.......③ LD S よって, ① ② ③より, -6<p<-2 ③ ② +d ① -6 -20 3 p (3) αβは異符号だから. aB<0 p<-6 よって, p<-6 aβ=p+6<0 より (4)α,βは異なる2つの実数解であるから (1) より p<-2,3<p ...① αβがともに1より大きいから (-1)+(-1)>0(α-1)(3-1)>0 2-(a+β)x+αβ=0 の解は α,βで,この判 別式をDとすると aβ< 0 ならば D=(a+β)2-4a>0 となるためD>0 の条 件は必要ない。 また、 ない. βの符号は定まら (4) (00)0-320- 煉4 練習 xo ∞* *** 48 (1)

解決済み 回答数: 1