学年

教科

質問の種類

数学 高校生

⑹で図形の対象性より外接球と内接球の中心が一致すると書いてありますが、 図形の対象性とはどういうことですか?

262 第4章 図形と計量 Think 例題 137 Sing= 正四面体の種々の量 ∠OMA=0 とする.また,頂点Oから平面ABCに下ろした垂線の足を 1辺の長さがα の正四面体OABC で, 辺BCの中点をMとして、 Hとする. 次の値を求めよ. (1) cose (3) △ABCの面積S (5) 正四面体の内接球の半径r [考え方] OH OM 0 1002000010 B A 正四面体の内接球の半径 001 内接球の中心をIとすると, OI, AI, BI, CI で, 四面体を4つ ania. の三角錐に分割したとき,それぞれの角錐の高さが内接球の半 径になる. CODE FOT つまり、内接球の半径は, 三角形の面積を分割して内接円の半 径を求めたアイデアと同様に、分割してみる. 正四面体の外接球の半径 外接球とは 4点 0, A,B,Cを通る球で, 対称性を考えれば, 内接球の中心と外接球の中心は一致する . 外接球の半径は OIになることを利用する. 解答 ∠OMA を含む △OAM に着目すると, on Jend A √√3 OM=AM=- 2 3507-03 また, 対称性より, 点Hは△ABC の重心である。 cos A= a 0 (2) sin0=√1-cos20 3 △OMH において OH = OMsin O √3 2 正四面体は左の図のように回転させても同じような立 体の状況になる. このように図形や立体が対称性をもつ場合,その性質 B を利用して考えるとよい。 (1) 点Hは線分 AM を 2:1に内分 する. ここで,(2) OHの長さを A H 求めるから, 辺 OH を含む △OMH B において, >(2) OH の長さ (4) 正四面体の体積V (6) 正四面体の外接球の半径R -ax THOSEBEN HM _1 OM AM == 3 2√2 3 2√2-√6 3 =- a 0-0000-001 802+024x 8\084-04-2A 0 0 H 1 /3 2 €OC LOCA +06) M AM M **** C -a=AM A B a 160° 20 B M 重心については p.426 参照 sin'0+cos'0=1 を |利用 A BET

回答募集中 回答数: 0
数学 高校生

うかる確率の問題なのですが集合の概念を使う必要があるのでしょうか?またなぜ私の解答は間違っているのでしょうか?

高の歩動の指対試こな 2 対 め ① Z ステージ3 入試実戦編 場合の数 本ITEM からは, 「法則」 の活用がメインとなります。 まずは, 「含む」とか「ある か、一見明確な表現について考えます. ここが 「含む」=「少なくとも1つある」 →補集合を利用 6/3× 桁の自然数を作 例題33 1,2,3,4,5の5種類の数字を並べて n るとき、次の問いに禁えば何があるかじ数字を繰り返し用いてもよいとす。 (1) (2) 数字 1,2をどちらも含む自然数は何個あるか. 着眼) (3) 数字 1,2,3を全て含む自然数は何個あるか. 2/16 (2)(3)×カルノ回使う必等以 (1) 含まれる数字1の個数は, 次のうちどれかです。 全体像を視 0 1,2, 3...,n 求めやすい 求めたい olan i これを見れば、問われている 「1を含む」には多くの場合があって面倒であり, 含まない」の方が考えやすいことが一目瞭然」 ここは「補集合」 を活用しましょう。 (2) (1) で得た着眼をもとに, 「包除原理」 を適用しましょう. 2つの集合A,Bが関 する問題ですから,「カルノー図」を用いて視覚化します。 (3) こちらは3つの集合 4, B, C ですから「包除原理」+「ベン図」で.ただし... 解答作られる自然数の総数は5.… (*) (右図参照)1桁目 2桁目 また,それらから作られる3つの集合||||| A: 「1を含む」, B: 「2を含む」 C: 「3を含む」 1 を考える. 2 (1) Aの補集合は A: 「1を含まない」, i.e. 「n 桁が全て 2, 3, 4, 5」. : n(A)=4". ○これと (*) より 求める個数は n(A)=5"-n(A)=5"-4". (2) 求める個数はn (A∩B) である. ○B: 「2を含まない」, i.e. 「n 桁が全て 1,3,4,5」, ANB: 「1,2を含まない」 i.e. 「n桁が全て 3, 4, 5」. .. n(A∩B)=3". ○これらと (*) より 求める個数は n(A∩B)=5"-(4"+4-3") …① =5"-2.4"+3". 91 CHIRUPA 求めたい A A カルノー図で B 3 ¥ 5 B ・求めやすい (③3) ○求める個数は(A∩BC)である。 (2)までと同様にして n(A)=n(B)=n(C)=4". n(ANB)=n(BNC)=n(CNA)=3", ANBOT: 「1,2,3を含まない」 ie. 「n 桁が全て 4.5」 .. n(ANBNC)=2". これらと①より、求める個数は 。 n(ANBNC)=5n-(4+4+4"-3"-3"-3"+2") - 解説 ① ② で用いた公式を集合記号を用いて書くと、次のようになります。 (作られる 自然数全体の集合を表します. ① :n(A∩B)=n(Un (A∩B)- =n(U) -n (AUB) 除原理 . ド・モルガンの法則 ② : n (ANBNC) =n(U) -n (ANBNC)- 確率では事象 (U)-{n(A)+n (B)-n (A∩B)). =n(U)-n(AUBUC)L =n(U)-{n(A) + n(B)+n(C) ド モルガンの法則 ラ包除原理 -n(ANB)-n(BNC)-n(CNA)+ n(ANBNC)). ①ならまだしも,②をマジメに書くとそれだけで疲れちゃいますから、解答のよう にイキナリ数値を書きましょう. そもそも、 上記等式を“公式”として覚えて使ってい るというより, (2) のカルノー図や (3) のベン図を見ながら個数を過不足なく数えてい 注意1 ITEM 22 でも書いたように、ベン図を用いる際には、“本質的な集合”, つま るという感覚でいて欲しいものです。 り個数を求めやすい集合が輪の内側になるように描かなければなりません。 本間で求 めやすいのはA,B,C の方ですね。なので解答のような描き方になったわけです。 重要 再確認しておきましょう. ベン図を書く人にも工夫 集合の名称 2つの集合絡んだら, 名前を付けてカルノー図 3つの事象ではベン図.ただし輪の内側が求めやすいように. 注意2 本間では ITEM 6 注意でお見せした“主役脇役ダブルカウント”という有名な誤答 をする人が多いので注意すること. A TAATETER. ステージ3 入試実戦編 場合の数 95 → 5.19 類題 33 8/3× 100から999の3桁の整数の中で、 3つの位の中に2の倍数と3の倍数の両方を含むもの の数を求めよ.0=20より0は2の倍数同様に,0は3の倍数) ( 解答解答編p.11)

回答募集中 回答数: 0
数学 高校生

赤い線の9C2が分かりません😭

り出す。この きるか。 3 うちはn た方が確 った 29 整数解の組の個数(重複組合せの利用) 基本例題 (2) x+y+z=6 を満たす正の整数解の組(x,y, 2) は何個あるか。 (1) x+y+z= 7 を満たす負でない整数解の組(x,y, 2) は何個あるか。 CHART SOLUTION ○と仕切り の活用・・・・・・ (1) x+y+z= 7 を満たす負でない整数解の組(x, y, z) は、7個の○と2個の 仕切りの順列を考え, 仕切りで分けられた3つの部分の○の個数を、左から 順にx,y,zとすると得られる。 例えば 〇〇〇一〇〇|〇〇には 一〇〇|〇〇〇〇〇には M.2 基本事項 基本 28 がそれぞれ対応する。 (2) 正の整数解であるから,x,y,zは1以上となる。 そこで,x-1=X, y-1=Y, z-1=Zとおき, 0 であってもよい X≧0, Y≧0, Z≧0 の整数解 の場合 ((1) と同じ) に帰着させる。 これは、6個の○のうち,まず1個ずつをx, y, zに割り振ってから,残った3個の○と2個の仕切りを並べることと同じ である。 解答 (1) 求める整数解の組の個数は7個の○と2個のを1列に 並べる順列の総数と同じで 021 9C7=9C₂= -=36 (個) 9.8 2・1 (x,y,z)=(3,22) (x,y,z)=(0,25) 31 120** 別解 求める整数解の組の個数は,3種類の文字 x,y,zから 重複を許して7個取る組合せの総数に等しいから 3H7=3+7-1C7=9C7=9C2=36 (個) (2) x≧1,y≧1, z≧1 から x-1≧0, y-1≧0,z-1≧0 ここで, x-1=X, y-1=Y, z-1=Z とおくと X+Y+Z=6-3=3 よって求める正の整数解の組の個数は、3個の○と2個の を1列に並べる順列の総数と同じで PRACTICE ... 29 ③ ・・・ 3つの部分に分けるには, 3-1=2 (個) の仕切り が必要。 9! 2!7! でもよい。 5.4 5C3=5C2=- -10 (個) 2・1 21-HAL 別解 ○を6個並べる。 求める正の整数解の組の個数は,○と ○の間5か所から2つを選んで仕切りを入れる方法の総数 と等しいから 5Cz=10 (fE) 277 別解 3H3 = 3+3-1 C3 =5C3=5C2 10 (個) (1)x+y+z=9を満たす負でない整数解の組(x,y,z)は何個あるか。 (2) rul の整数解の組(x,y,z) は何個あるか。 3 組合せ ◆仕切り | は, 両端に入れ ることはできない。

未解決 回答数: 1
数学 高校生

数学の解き直しをしたいのですが、解答が無くなってしまい、出来ない状態です。心優しい方がいましたら、 数学の解答を全て写メって欲しいです。

Benesse スタディーサポート 事前学習用 問題集付き 活用 BOOK 12日 【今回のテーマ】 「学習スタイル」は 高校生に 変われている? 高校生活は、部活動や学校行事、 毎日の学習など 盛りだくさん! CONTENTS 【もくじ】 ・スタディーサポートって何? 03 スタディーサポートについて知る ・受験前に、 「今の自分」を知ろう....... 04 ・いざ、 受験準備をしよう・ ···········05 動画を見たらさっそくこの本に取り組もう! スタディーサポートの結果を活用する ・返却結果を生かそう ······ 06 ・実際に返却結果を振り返ろう・・・・・・・・ 08 ・「学習力MAP」でレベルアップ 10 •••••• ・志向性の結果を確認しよう ・・・・ これからもっと頑張りたいきみを応援 するサポートチーム「スタディーサポー ト」とは!? 右の二次元コードから 動画を見て確認しよう! 結果が返ってきたら・・・ 次のアクションをイメージ・実行できるように 左の二次元コードから動画を見よう! クラス 出席番号 名前 巻末 事前学習用問題集 ・スタディーチャージ・・ -12 PD ・巻末 3141028D

回答募集中 回答数: 0
数学 高校生

数Bの問題です。提出が近くて困っています💦 【?】について教えてください🙇🏻‍♀️

Link 考察 研究 漸化式の活用 漸化式を活用して,次の図形の問題について考えてみよう。 例題 1 解答 平面上にn本の直線があり、どの2本も平行でなく,また,どの 3本も1点で交わらないとする。 これらn本の直線が、平面を α 個の部分に分けるとき, am をnの式で表せ。 1本の直線で, 平面は2つの部分に分けられるから a=2 DHC n本の直線により, 平面が an 個の |n=3のとき 第三 部分に分けられているとき (n+1) 本目の直線lを引く。 TA l n本の直線とn個の点で交わり, Tr+25} (n-1) 個の線分と2個の半直線にして 分けられる。 OD これらの線分と半直線は, それが含まれる各平面の部分を2つに 分けるから,直線lを引くことで平面の部分が (n+1) 個増える。 an+1=an+(n+1) すなわち an+1-an=n+1 数列{an}の階差数列の一般項がn+1であるから.n≧2のとき an=a+1/(k+1)=2+1/12(n-1)n+(n-1) よって an = 1/2 (n²+n+2) よって 初項は α=2 なので,この式はn=1のときにも成り立つ。 1 an - (n²+n+2) したがって 求める式は 2 2 3 【?】 直線l を引くことで平面の部分が (n+1) 個増加する。 n=3のときの図を使って説明してみよう。 ・ この理由を, 10 15 20

未解決 回答数: 1