学年

教科

質問の種類

数学 高校生

この問題のサシスについて質問です。 0.95になると、なぜ有意水準の棄却域が②のようになるのでしょうか? 解説お願いします🙏

アプローチ ①問われている。 ②それぞれの資料の特徴をとらえる step1 例題で 速効をつかむ アプローチ 以下の問題を解答するにあたっては,必要に応じて正規分布表 (75ページ)を用い 2 例題 てもよい。 正四面体の4つの各面に1から4までの数字が1つずつ書かれている いころがある。このさいころを4800回投げたところ、4の目が1260回 でないと判断してよいかを 出た。このさいころは、4の目が出る確率が一 有意水準 5%で仮説検定する。ただし、このさいころの出た目とは,正 四面体の底面の数字とする。 まず, 4の目が出る確率を とするとき、帰無仮説は「4の目が出る確率はアであり 対立仮説は「4 の目が出る確率は「イ」である。次に帰無仮説が正しいとすると、4800回 のうち4の目の出る回数Xは,ウに従う Xの期待値 m と標準偏差のは,m=エオカキ .o=|クケ | である。 よって, X-m Z= ーは近似的にコに従う。 0 正規分布表より P(-1.96 ≦Z≦1.96) サ シス であるから,有意水準 5%の棄却域はセとなる。 X=1260のときZの値は棄却域に入るから帰無仮説は棄却できる。 ア イの解答群 Op≤ ≤10 P< 0 P = p> ウ コの解答群 ⑩ 正規分布N4800, ③二項分布B 4800, 1 セの解答群 ② p ③ 1 ①正規分布N (1, 0) 16 ② 正規分布N (01) 1 ⑤二項分布B(12601) ④ 二項分布B 4800, 16 ⑩ -1.96 Z 1.6 ① Z ≦ -1.96 ② Z ≦ -1.96,1.96 ≦ Z ③Z ≦ 1.96 数学-70

解決済み 回答数: 1
数学 高校生

なぜマーカーの部分は、1.64や2.33と出てくるのですか?

少年サッカーチームA, B のこれ (1) 有意水準5%で検定せよ。 た。 AはBより強いと判断してよいか。 (2) 有意水準 1% で検定せよ。 40勝24敗であっ 4 CHART & SOLUTION 大きい(小さい)を判断するならば、片側検 「強いかどうか」 すなわち 「勝つ回数が多いかどうか」 を判断するから, 棄却域は確率分布の 右側だけにとる。 正規分布表から, (1) はP(Z≦2)≒0.95 を満たすを, (2)はP(Zz) = 0.99 を満たす を求める。 [注意] 「AとBの強さに差があるか」 を判断するなら, 両側検定を用いる。 解答 (1) Aが勝つ確率を とする。 AがBより強いならば,> 1 2 「強いと判断してい 説を立てる。 仮説p=1/2 である。 ここで, AとBの強さは同等であるという次の仮 1 仮説が正しいとすると, 64回の対戦のうち, Aが勝つ回数 か」とあるから、 を前提とする。 手順 判断した に反する仮説を立てる <<40+24=64 Xは,二項分布 B 64,212) に従う。 基本 内容 し、 ある BETU CH 異な 母平 なわ 母平 いて これ す る 無する 無 Xの期待値mと標準偏差のは 標 2 m=64.. =32, 6=/64. =4 2 X-32 4 ← X が二項分布 B(m. に従うとき= 6=√npa ①と よって, Z=- は近似的に標準正規分布 N (0, 1) に 従う。正規分布表より, P (Z≦1.64) ≒ 0.95 であるから, 有意水準 5% の棄却域は Z≧1.64 X=40 のとき Z= 40-32 4 ←=2であり,この値は棄却域に ただし, q=1-2 ■手順② 棄却域を求 P(Z≦1.64) = 0.5+p(1.64) ≒ 0.5 +0.45 34布正意 32 40 X 入るから, 仮説は棄却できる。 したがって, AはBより強いと判断してよい。 手順3 仮説を 棄 かを判断する。 2) 正規分布表より,P(Z≦2.33) ≒ 0.99 であるから,有意P(Z≦0.99) 水準 1% の棄却域はZ2.33 Z=2は棄却域に入らないから、仮説は棄却できない。 したがって,AはBより強いと判断できない。 PRACTICE 798 =0.5+p(2.33) 注意 大 0.5+0.49 P

解決済み 回答数: 1
数学 高校生

数B 画像の赤丸のとこはなぜ2×1.96をするのですか?

470 基本 例題 77 母比率の推定, ころ, 8本が不良品であった。 合いかぎ全体に対して不良品の含まれる 率を95%の信頼度で推定せよ。 (2) ある意見に対する賛成率は約60% と予想されている。 (弘 くたと この意見に対す ある賛成率を 信頼度 95% で信頼区間の幅が8%以下になるように推定した い。 何人以上抽出して調べればよいか。 CHART & SOLUTION 信頼区間の幅 信頼区間の式における土の差 467 基本事項 (2) 標本の大きさが大きいとき, 標本比率を R とすると, 母比率に対する信頼度 R(1-R) n R(1-R){-1.9 の信頼区間は [R-1.96 「R(1-R) , R+1.96y n よって, 信頼区間の幅は 1.96 n 解答 (1) 標本比率 R=- -=0.02, 8 400 R(1-R) =0.007 400 R(1-R)\ n よって、不良品の含まれる比率』の信頼度 95%の信頼区間 は [0.02-1.96×0.007,0.02+1.96×0.007] 1.96×0.007≒0.014 9761 ゆえに [0.006, 0.034] すなわち (2)標本比率を R, 標本の大きさをn人とすると, 信頼度 -0.6% 以上3.4%以下 EX AA 59 6 95%の信頼区間の幅は3.92 R(1-R) 品 n 信頼区間の幅を 8% 以下とすると 出 R(1-R) 3.92/ ≦0.08 【R(1-R) 2×1.96 n 標本比率 R は賛成率で R=0.60 とみてよいから 0.6×0.4 3.92 ≤0.08 n nは大きいから、Rは早 比率 p=0.60でおきま えてよい。 よって 両辺を2乗して 3.92/0.6x0.4 0.08 n≧492×0.24=576.24 この不等式を満たす最小の自然数nは577 したがって, 577 人以上抽出すればよい 100 3.92 =49 0.08

解決済み 回答数: 1
数学 高校生

数Bです。 正規分布表で0.4950に近いやつは画像の赤丸のうちどちらですか??

[資料2] 止 YA ・カ (2) -u O u 2 .03 .04 .05 .06 .07 67 .08 .09 .02 16 .00 .01 0.0040 0.0 0.0000 0.0557 0.0517 0.0438 0.0478 0.1 0.0398 0.0948 0.0871 0.0910 0.2 0.0793 0.0832 0.1331 0.1293 0.3 0.1179 0.1217 0.1255 0.1700 0.1664 0.1628 0.1591 0.4 0.1554 10.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.0596 0.1026 0.0987 0.1368 0.1736 0.0636 0.0675 0.1064 0.0714 0.0753 0.1103 0.1406 0.1443 0.1141 0.1772 0.1808 0.1844 0.1480 10.1517 0.1879 20.5 0.1915 10.1950 10.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 20.6 0.2257 0.7 0.2580 0.8 0.2881 0.9 0.3159 0.2324 0.2291 0.2642 0.2611 0.2939 10.2910 0.3212 0.3186 10.2357 0.2389 0.2422 0.2454 10.2486 0.2517 0.2549 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 20.2852 10.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 20.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 0.3665 1.1 0.3643 0.3686 0.3708 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.3729 0.4505 0.4599 0.4678 0.4744 0.4515 0.4525 0.4535 0.4545 0.4608 0.4616 0.4625 0.4633 0.4686 0.4693 0.4699 0.4706 0.4750 0.4756 0.4761 0.4767 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 2.3 0.4893 0.4896 0.4898 0.4901 2.4 0.4918 0.4920 0.4922 0.4925 0.4842 0.4878 0.4846 0.4850 0.4854 0.4857 0.4881 0.4884 0.4887 0.4890 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.3790 20.3810 0.3830 0.3962 0.3980 0.3997 0.4015 0.4131 0.4147 0.4162 0.4177 0.4265 0.4279 0.4292 0.4306 0.4319 0.4406 0.4418 0.4429 0.4441 0.4394 0.3749 0.3770 0.3944 0.4115 0.4941 0.4943 0.4927 0.4929 0.4931 0.4945 0.4946 0.4948 0.4949 0.495100.4952 2.6 0.495340.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643 2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.497280.49736 2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807 2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861 3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886049888 0498930.498970.49900/

解決済み 回答数: 1
数学 高校生

矢印を引いているところの変形がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

94 難易度 ★★ SELECT SELECT 目標解答時間 15分 90 60 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 次のような科学者 A 博士のメモが見つかった。 19 ア の解答群 89 このメモでは、小数第2位の数字が3であるかはっきりしない。 仮説検定をすることで,この確率の値について考えてみよう。 (1) 実際に粒子 Rを100個取り出したところ 31個が性質Pをもっていたとする。性質Pをもつ確 率は0.33 より小さいと判断してよいかを, 片側検定を用いて, 有意水準 5% で検定する。帰無 仮説は = 0.33 であり, 対立仮説はか ア 0.33 である。 粒子Rが性質Pをもつ確率は0.3である 256 -0.33 0.67 ×0.332 201 201 0.221 X 10 R 0.83 P 0.33 ② ≠ 20,1080 0.2389 0.88 33 14 帰無仮説が正しいとする。 粒子Rを1個取り出すとき、性質をもつならば1もたないなら ば0 の値をとる確率変数を Xとする。 X,の期待値をE(X), 分散をV(X), 標準偏差を とする。 E(X) は 0. イウであり, V(X) は 0.エオである。P(1-P)=0.33×0.67=0.24 0.33 粒子 R を 100個取り出したときに性質をもつものの個数は,二項分布カに従う! 4/0.0200 カ 1の解答群 0.4. 788 (20 ⑩ B(100,0.33) ① B(100,0.31) B(10, 0.33) B (10, 0.31) 31-0.33 とみなすと, Z= は近似的に標準正規分布に従う。 粒子を100個取り出したときに性質Pをもつものの割合をYとする。 個数 100が十分大きい YA #2 070147 ク ク ]】の解答群(同じものを繰り返し選んでもよい。 (n) (0 032 0.31 ① 0.32 0.33 0 ④ 1 (5) 10 100 320 0 of 0.47 と近似すると,P(Y≦0.31)の値は ケ であり、実際に100個取り出して31個が性 02 質をもっていたとしても、帰無仮説は棄却されず、確率は0.33 より小さいと判断できない。 ケ については,最も適当なものを、次の①~④のうちから一つ選べ。 547 0.11 ① 0.27 0.33 0.47 ④ 0.66 142 (2) 粒子R を取り出す個数をnとする。 0.31n 個が性質Pをもっていたとする。 n を十分大きいとみ なしの100をnに変えて検定するとき,帰無仮説が棄却されるようなぇの値として適するものは 0142) 200, 500, 1000, 2000, 5000, 10000 のうちに全部で コ 個ある。 0.50 10,08 143 (配点 10) (公式・解法集 107 108 110

解決済み 回答数: 1
数学 高校生

エオの分散がわかりません。 写真の上の方が問題になってます!! 私は分散と言われたら2枚目の写真のように解いていたのですが、解説を見ると蛍光ペンで引いているところのように書いてあったのですが、v(x)=p(1-p)は2枚目の写真と同様分散を求める時にはいつでも使えるのですか... 続きを読む

94 仮説検定 こう解く! 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 次のような科学者A博士のメモが見つかった。 性質をもつ確率は0.3である このメモでは、小数第2位の数字が3であるかはっきりしない。 仮説検定をすることで,この確率の値について考えてみよう。 (1)実際に粒子 R を100個取り出したところ, 31個が性質Pをもっていたとする。 性質Pをもつ確 率は0.33 より小さいと判断してよいかを,片側検定を用いて,有意水準5%で検定する。 帰無 仮説は = 0.33 であり、 対立仮説はが 10.33 である。 解答群 ① > ア ② キ 帰無仮説が正しいとする。 粒子Rを1個取り出すとき、性質をもつならば1, もたないなら ば0の値をとる確率変数を Xとする。 Xの期待値をE(X), 分散をV(X),標準偏差をとする。 E(X) は 0. イウ であり,V(X)は0.エオである。 粒子 Rを100個取り出したときに性質P をもつものの個数は,二項分布 カに従う。 カの解答群 ⑩ B(100, 0.33) ① B(100,0.31) ② B(10, 0.33) ③ B (10, 0.31) STEP 帰無仮説を正しく捉えよう 1 ●帰無仮説が = 0.33 である から,確率の計算はその値を 用いて行う。 とみなすと Z= は近似的に標準正規分布に従う。 粒子Rを100個取り出したときに性質Pをもつものの割合をYとする。 個数 100 が十分大きい Y-# ク の解答群 (同じものを繰り返し選んでもよい。) ⑩ 0.31 ① 0.32 (2 0.33 ③ 0 11001000 ケ 2 STEP 標準正規分布に近似しよう nが十分大きいとき二項分 布は正規分布に近似でき、さ そらに確率変数の標準化により 標準正規分布に近似できる。 ここではn=100 が 「十分大 「きい数」 であることが示され ている。 =0.47 と近似すると,P(Y0.31) の値は であり、実際に100個取り出して31個が性 質Pをもっていたとしても、帰無仮説は棄却されず,確率は0.33より小さいと判断できない。es. 0001 ケについては、最も適当なものを、次の①~④のうちから一つ選べ。 ⑩ 0.11 ① 0.27 ② 0.33 ③ 0.47 ④ 0.66 (2)粒子R を取り出す個数をnとする。 0.31 個が性質Pをもっていたとする。 n を十分大きいとみ なし(1)の100に変えて検定するとき、帰無仮説が棄却されるようなnの値として適するものは 200,500, 1000, 2000, 5000, 10000 のうちに全部でコ 個ある。 STEP を大きくして考えよう 3 取り出す個数nが大きければ 大きいほど棄却域に入りやす くなる。 0.31が棄却域に入る。 ような大きさのn を考えよう。 解 答 (1) 実際の標本における性質Pをもつものの割合 小さく, 片側検定を用いるので, 対立仮説は 31 = 0.31 が 0.33 より 100 p < 0.33 ( 1 帰無仮説が正しいとすれば,性質Pをもつ確率が p=0.33 であるから イウ E(X)=p=0.33A (1 A エオ V(X)=p(1-1) = 0.33×0.67=0.2211≒0.22 粒子 R を100個取り出すとき,p=0.33 であるから,性質をもつも のの個数は二項分布 B (100, 0.33) に従う。 個数100が十分大きいとみなすと, 二項分布は近似的に正規分布に従う。 したがって,粒子Rを100個取り出したときに性質をもつものの割 定義に従うと B) 1 E(X) = 0.P(X=0)+1・P(X=1) =0.0.67+1・0.33 =0.33 1 となる。 CB 合を Y とすると, Yは期待値が E (X), 標準偏差が 0 分散の公式を用いて 100 10 の正規 分布に従う。 Point V(X)=E(X2)-{E(X)} = 0.33-(0.33) 実 定 標準 0=0 であ

解決済み 回答数: 1
数学 高校生

数Bの練習問題106の部分なのですが矢印を引いているところがなかなかxの値にならず計算方法を教えていただきたいです。よろしくお願いします🙇‍♀️

練習問題 従うものとする。 1106 正規分布の標準化 大学の入学試験において, 受験生 5400人全体の平均は53.6点, 標準偏差は 19.2点であった。 試験の得点 X は正規分布 この大学を受験したAさんの得点は68点であった。 Xは正規分布に従うから,Z= よって, X-アイ ウ エオ [カ] は標準正規分布に従う。 P(X≧キク)=P(Z≧ケコサ= 0. シスセソ この大学の受験生を任意に選んだとき、 この受験生の得点が68点以上である確率は,正規分布表を利用すると となる。 したがって, 受験生全体に得点の高い方から順位をつけたとき, Aさんの順位はタに属すると考えられる。 タの解答群 1位から299位の間 300位から599 位の間 (1 ③900位から1199 位の間 ⑥1800位から 2099 位の間 ④ 1200位から1499位の間 2400位から 2699 位の間 ⑦ 2100位から2399位の間 600位から 899 位の間 ⑤ 1500位から1799位の間 ⑨ 2700位から 2999 位の間 受験生全体の67% が合格した。 合格最低点はおよそチ 点であったと考えられる。 チ の解答群 36 ① 39 ② 42 (3 45 ④ 48 ⑤ 51 ⑥ 54 ⑦ 57 (8 60 963 解答 01 Z = (1) 確率変数 X は正規分布 N (53.6, 19.22) に従うから X - 53.6 19.2 確率変数の標準化 とおくと, Zは標準正規分布 N (0, 1)に従う。 X が正規分布 N (m²) に従 Od.d うとき, 68-53.6 X-m X ≧ 68 のとき Z≧ = 0.75 であるから 確率変数 Z = は 6 19.2 標準正規分布N (0, 1) に従う。 7 P(X≧68)=P (Z≧0.75) この 章 さらに =0.5-u(0.75)=0.5-0.2734 = 0.2266 5400 x 0.2266=1223.64≒ 1224 よって, Aさんの得点は高い方からおよそ1224番目と考えることが 正規分布表より u(0.75) = 0.2734 統計的な推測 できる。ゆえに, Aさんの順位は (2) 負の数 - (m>0) に対して 1200位から 1499 の間 (④) P(Z≧-m) = 0.5+P-m≦Z≦0) よって P(Z≧-m) = 0.67 のとき 正規分布表より,これを満たすm の値は = 0.5+P(0≦z≦m)=0.5+u(m) 0. 合格者は受験生全体の50%を 超えているので負の数 対して に P(Z≧-m)=0.67 1 u(m) = 0.17 を満たす m を求める。 m = 0.44 正規分布表 X-53.6 ゆえに、合格最低点は さらにZ-0.44 のとき -0.44 = およそ45点 (③) より X = 45.152 u(0.44) = 0.1700 19.2

解決済み 回答数: 1