学年

教科

質問の種類

数学 高校生

数学1aです。確率です。教えてください。

上が有理数 第3問 (選択問題) (配点 20) (1)1回目の試行について考える。 IA イウ 太郎さんと花子さんは、図のように、階段の手前 (0段目)にいる。 2人は,1, 2,3の数が一つずつ書かれた合計3個の球が入っている袋を一つずつ持っており, 下の手順1から手順3を行う。 太郎さんが1段目にいる確率は ア である。 イ また,太郎さんが3段目にいる確率は ウ である。 I 7段目 6段目 5段目 4段目 3段目 段を上がらない確率を P(0) とする。 (2) 試行を2回繰り返す。 以下、1回の試行で太郎さんが N段 (N= 1, 2, 3) 上がる確率を P(N) とし,階 2段目 1段目 (i) 太郎さんが6段目にいる確率は オ である。 (n) 太郎さんが5段目にいる確率は2× カ である。 () 太郎さんが4段目にいる確率は2× キ +1 ク である。 次の手順1から手順3までを1回の試行とする。 手順1 太郎さんと花子さんは自分の持っている袋からそれぞれ無作為に球を 1個取り出し, 球に書かれた数を確認する。 手順2 次のようなルールにしたがって階段を上がる。 ルール ・2人がそれぞれ取り出した球に書かれた数が異なる場合 オ カ の解答群 (同じものを繰り返し選んでもよい。) ⑩P(2) × P(2) P(3) xP(3) ②P(2) XP(3) 大きい数が書かれた球を取り出した方が, その球に書かれた数だけ階 段を上がる。 キ ク の解答群 (同じものを繰り返し選んでもよい。) ⑩P(1) xP(2) ①P(1) xP(3) ②P(2) XP(2) ・2人がそれぞれ取り出した球に書かれた数が同じ場合 2人とも階段を1段上がる。 手順3 それぞれ自分の袋に球を戻す。 また、2回の試行の後,太郎さんが3段目にいるとき 1回目の試行で太郎さ ケ (数学Ⅰ・数学A 第3問は次ページに続く。) んが3段目にいた条件付き確率は である。 コ (第2回-13) (第2回-14) (数学Ⅰ・数学A 第3問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

コサシの線を引いたところが理解できませんでした。教えて頂きたいです🙇‍♀️

第4問 (配点 20)の点(可) 太郎さんと花子さんの学校で全員参加の球技大会が実施される。競技の種類は、 サッカー,バレー,テニスの3種類で,1人が参加できる競技は一つだけである。 太郎さんと花子さんは,自分たち2人とその友人6人の合計8人の競技への参加 方法について話している。 太郎:前回の球技大会ではみんな同じ競技に参加したから、今回の球技大会 では,どの競技にも8人のうちだれかが参加するようにして,あとで 情報交換しようよ。そうしたとき,どの競技に何人が参加することに なるのかな。 花子:どのような人数の組合せがあるか考えてみようよ。 8人を三つに分ける とき,例えば,{1人, 1人, 6人} や {1人,3人,4人} などがあり,人 数の組合せは全部で5通りあることがわかるね。 太郎:でも,競技の種類は3種類だから,それぞれサッカー,バレー,テニ スの場合を考えないといけないね。 どの競技に何人が参加するかを対応させる方法は,8人を {1人, 1人,6人} に 分けるときは ア 通り, {1人,3人,4人} に分けるときは イ |通りである。 太郎:他の人数の組合せも同じように調べてもいいけど,他に方法はないの かな。 花子:次のように考えたらどうかな。 一花子さんの考え 8個の○と2本の仕切り棒」を用意し、それらを横一列に並べて 左側のより左にある○の個数をサッカーの参加人数 2本のの間にある○の個数をバレーの参加人数 右側のより右にある○の個数をテニスの参加人数 と対応させて考える。 例えば, 〇〇〇〇〇〇〇〇の場合なら サッカーが3人, バレーが3人, テニスが2人 となる。

回答募集中 回答数: 0