学年

教科

質問の種類

数学 高校生

(2)のマーカー部分が分からないです💦 わかる方いらっしゃいましたら教えて頂けると嬉しいです よろしくお願いします🙇‍♂️

12 3456 数学Ⅱ. 数学B 数学C 1 66 I ' 2 66 第4問~第8問は,いずれか3問を選択し、解答しなさい。 3 4 ( ( -4-4-4 こ -4 第5問 (選択問題)(配点 16) 数直線上に点Pがあり, Pは初め, 原点にあるものとする。 さいころを投げて, 1または2の月が出たとき点Pは正の方向に3だけ移動し、そ れ以外の目が出たとき点Pは負の方向に2だけ移動する。 この試行を4回繰り返し たときの点Pの座標を表す確率変数を Xとする。 (1)n=2とする。 > I 2 2 数学Ⅱ 数学 B 数学 C (2) さいころを回投げて、1または2の目が出る回数を表す確率変数をZとする。 このとき,Zは二項分布B (n, 1/2)に従うから,Zの平均(期待値)をE(Z),分 散をV(Z) とすると セ タ E(Z) n, V(Z) n ソ チ 9 である。 N(M.62) 9 N(37) XとZは関係式 X= ツ Z- テ nを満たすから ア X=6 となる確率は ウ 4 であり, X=1となる確率は である。 イ 55 I 9 164 6 さらに,Xの確率分布を表にまとめると次のようになる。 367 くしく 562 X 6 計 ア ウ 4 オ 確率 イ 9 エ 9 9 12 3 369 したがって, 確率変数Xの平均 (期待値)をE(X), 分散をV(X) とすると E(x)=+= である。 -2 キク コサシ (00 E(X)= V(X) = E(x2)=36 9 **** 164 ケ ス 3 16 v(x)- 100 (数学Ⅱ 数学 B 数学C第5問は次ページに続く。) トナ E(X)= n ニ が成り立つ。 また, n=10 のとき,X の平均 (期待値)をE(X4) とすると である。 ヌネノ E(X2)= ハ

解決済み 回答数: 1
数学 高校生

線で引いたとこの意味がわかりません💦

数学II,数学B,数学C 第4問~第7問は,いずれか3問を選択し,解答しなさい。 以下, a= コ とし, nを自然数とする。 第7問 (選択問題) (配点 16 ) α を正の実数として, xの整式 を考える。 P(x)=x+ax²+ (4-α)x+5-2a P(-1)= ア であり 1-4+1+5-20 P(x)=(x+イ ){x²+(a- ウ r エ a+オ である。 3次方程式 P(x)=が虚数解をもつようなαの値の範囲は 0<a< カキ + 久 であり,このとき,P(x)=0 の虚数解をα,とし, 実数解を y とする。 '+1=0となるの値はα+Q=-atla2+2=(x+- 数学II, 数学 B 数学 C 太郎さんと花子さんは α" + " + y" の値について話をしている。 太郎:計算してみたけど,とは同じ値になっているね。 花子: とも同じ値になっているよ。 太郎:Bについてもαと同じように β^= B, B° = B2 が成り立つよ。このよう に考えていくと α + β" + y” の値がわかりそうだね。 03=B3 = サ であるから nが3の倍数のとき, α+B" = シ nが3の倍数でないとき, "+B"=スセ である。 したがって, α" + β" + y” のとり得る値は ソ 個である。 a= である。 -2 x=5-20 200 数学II,数学B,数学C 第7問は次ページに続く。) 1-172: (x+1) +2=(a+1)-215-20 ++(0-1x+15-2a) =a-20+1-10+4a= 2+205 x+1/2+ax²+(-a)x+5-2aa2+za-9 ナズナズ -(α-1) x² + (α-1)x (0-1)x+(4-0)x (5-2m)x-2a 15-2017+5-29 4xux-ax+x a²+20-9+1=0 02120-8:0 a= 2 +32 -2±6 D= (a-11-45-24 =u-zatP-20- =m²+60-19 x2+10-1)x+15-20) 2-1 | 2³± ળલ+(4-67245-29 (0-1)x²+(4-0)x 470-0 1719 92769-1950 5x. (5-20)x+5-2a 210-117²-10-112 -246-2-6 -6±136 a = Z 2 2 -25- -5 -8 2112 2156 A 57292

解決済み 回答数: 1