学年

教科

質問の種類

数学 高校生

なぜ、xの値とtの値が対応してるのですか? tとkの関係もわかりません。

例題 169 指数方程式の解の個数 方程式 4x-2x+2 + k = 0 の異なる実数解の個数を調べよ。 Action f(x)=hの実数解は, y=f(x)のグラフと直線y=kの共有点を調べよ ・12x=t(>0) とおき,与式をf(x) - ) =kの形に変形する。 解法の手順・ 2xの値とtの値の対応を考える。 3|y=f(t) のグラフを利用して, 実数解の個数を調べる。 解答 与えられた方程式を変形すると -(2x)2 +4.2% = k ... ① 2* = t とおくと, t>0 であり - t² + 4t = k ここで,xの各値に対して tがただ1つ求まり、逆にt> 0 を満たすtの値に対してもxの値が必ず1つ定まるから, 方程式 ① の異なる実数解の個数は,t の方程式②のt> 0 における実数解の個数と一致する。 ここで, f(t)= t + 4t とおくと f(t)=-(t-2)2 +4 方程式f(t)=kのt> 0 を満たす実数 解は, y = f(t)(t> 0) のグラフと直線 y=kの共有点の座標である。 したがって、右のグラフより 求める実数解の個数は k> 4 のとき 0個 k=4,k≦0のとき 1個 0<k<4 のとき 2個 4 O _y=f(t) y=k →例題167, IA115 2 4 4°= (22)*= (2) 2 2x+2 = 2.22 = 4.2x これらのことは, グラ フからも明らかである。 t=2 O 1対1 x 10 2 4 t (もとの方程式の実数解xの個数)=(f(t)=kの正解tの個数) 20個 1個 2個 1個 とくに, k=4,k=0 の とき共有点は1個である ことに注意する。 Pointh 方程式f(t)=kの実数解の個数 例題169 では,2" tと置き換えたが,正の数の値とxの値は1対1に対応するから, y=f(t)(t> 0) と y=kの共有点の個数がそのままもとの方程式 ① の実数解の個数 となる。 =(y=f(t) (t> 0) と y = k の共有点の個数) 4章 4 指数関数

回答募集中 回答数: 0
数学 高校生

この丸ついてるところの解説が意味不明です教えてください(><)

(a-26) の展開式で, a b の項の係数は る。また, (x2-22 ) の展開式で,xの項の係数は "[ XC る。 答 指針展開式の全体を書き出す必要はない。 求めたい項だけを取り出して考える。 (a+b)” の展開式の一般項は nCran-br まず、一般項を書き, 指数部分に注目しての値を求める。 (ウ)、(エ) 一般項は Cr(x2)=(-2/24) = Crx-12-27. (-2)" (a-26) の展開式の一般項は Cra" (-26)"=Cr(-2)'a'b' a b の項は r=1のときで, その係数は 6C1 (-2)=-12 ○また α264 d2b^ の項は r=4 のときで,その係数はなは 6C4(−2)^= 240 6 また、(+2 (x-22 ) の展開式の一般項は X $6+1480K-65 の項の係数は 264 DELO ■ 定数項は -=Cr(-2).x12-2 ここで,指数法則 a" ÷ a" = a "-" を利用すると x12-2r-r=x12-3r したがって,指数 12-3r に関し,問題の条件に合わせた方程式を作り,それを解く。 X12-2r xr (o+d+b) Cr(x²)-(-2)=Cr(-2)², x12-2r x" [Cr(-2).x12-2r-r =6C(-2)”. x12-37. ...... [京都産大] 0x90 (5+(6+p)}=(3+6+5)) x の項は, 12-3x=6よりr=2のときである。 その係数は ① から 6C2 (-2)=260 定数項は, 12-3r=0 よりr=4のときである。 したがって ①から 6C4(−2)*==240 エ LIEL ◄6C₁=6 x" O6C4-6C2=15, (−2)ª=16 rad: PROSETS ID +8+o であ であ 基本1 (*)の形のままで考える (ウ) の項は x12-2r -=x6 *CO (エ)定数項は ゆえに x12-2x.xr M よって 12-2r=6+r これを解いてr=2 12xとすると |12-2r=r これを解いて r=4

回答募集中 回答数: 0