学年

教科

質問の種類

数学 高校生

どうして黄色いところの式になるのか分かりません、、。教えて欲しいです

重要 例題 173 連立不等式で表される立体の体積 00000 xyz空間において,次の連立不等式が表す立体を考える。スエ (0≦x≦1,0≦x≦1,0≦x≦1,x2+y2+22-2xy-1≧0 (1)この立体を平面 z=t で切ったときの断面を xy 平面に図示し、この断 面の面積 S(t) を求めよ。 (2) この立体の体積Vを求めよ。 [北海道大] 基本165 CHART & SOLUTION この問題では、連立不等式から立体のようすがイメージできない。 そのような場合も 断面積を求め, 積分すればよい。 この問題では, (1) で指定されているように, z軸に垂直な平面 z=tで切ったときの切断面 を考える。 解答 (0≦x≦1であるから 1枚 x2+y2+22-2xy-1≧0 において, z=t とすると x2+y2+t2-2xy-1≧0 (y-x)2≥1-12 y-x-1-2 または √1-f≦y-x y≦x-v1-12 よって すなわち ゆえに または y≧x+√1-12 よって, 平面 z=t で切ったとき 水の断面は、右図の斜線部分である。 ただし、境界線を含む。 YA y=x+1-t2 y=xv1t2 √1-12 また S(t)=2/12 (11) 2 1-√1-2 転体に(1-√1-2)2 O √1-12 x 1-√√1-12 z=t を代入すれば、断 面の関係式 (xy平面に 「平行な平面上) がわかる。 X'A' (A≧0) ⇔X≦-A, AsX ←T = √1 -f とおくと、 断面は直線 y=x+T の上側 y=x-T の下 側で, 0≦x≦1,0≦y≦1, 0≦T≦1 である。 2つの合同な直角二等 辺三角形の面積の合計。 (2) V=SS(t)dt='(1-√1-1²)²dt 1 =(2-1-21-1)=[21-1]-2S コード at t=2t S 1-dt は半径が 1 の四分円の面積を表すから 5 =2-13-21-1-1 PRACTICE 1736 を正の実数とする。 xyz 空間において, 連立不等式 MELE x²+ y² ≤r², y²+z² ≥ r² - 2 | 積分区間は 0≦t≦1 bxS ←t=sine の置換積分法 より、図形的意味を考え た方が早い。

解決済み 回答数: 1
数学 高校生

ケコがわかりません。 ①2枚目の写真で蛍光ペンを引いているところなのですが、教科書で見たことがない解き方で、3枚目の写真(自分でまとめたノート)なのですが、これは黄色の蛍光ペンとピンクの蛍光ペンどちらなのですか? ②共通テストで統計が出るのですが、初めの二項分布とかは誘... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである, 曲がっていない針を1本用意する。 次に, 平坦な机の上に, 隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし, 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後, 針を机から取りあげる。 (1) 1≤k≤1600 +3. k回目の試行について, 落ちた針が机に描かれた平行線と共有点をもつ場合は1, 共有点をも たない場合は0となるような確率変数を X とおく. また + X=X+X₂++X1600 m とする. 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと, Xは二項分布 Bア, に従う。 で また、実験回数の値1600は十分大きい数なので, 二項分布 B( 正規分布 N(m,) と見なすことができる。 ただし ・① は近似的に X-m ① X-m ② X-a 6 m ③ X-02 m 回の試行を行う形式を 形式をとることで, 今回の実験をすることができた。 のの結果、落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 _1000_5 R=1 1600 8 このとき、落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度 今回の実験結果から, (1) でおいたかの値の, 信頼度 95%の信頼区間を推定しよう (i) 本間では, 正規分布表 (省略) を用いて答えよ。 1600 |標準正規分布 N (0, 1)に従う, (1)の確率変数Zについて, 正規分布表より P(カキクZカキク)=0.95 が成り立つ。 (i)の結果より,標準正規分布 N(0, 1)に従う確率変数Zはおよそ95%の確率で不等式 ウ m= σ²= H カキク ZSカ キク また, >0である。 をみたしている。 ここで, 確率変数Xが近似的に正規分布 N(m, ♂) に従うので, 確率変数Zを a である。 このとき,確率変数X, Zは関係式 ② 220 Z= オ ...2 Z= オ TOCH と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 をみたす。 er-14 ア ウ の解答群(同じものを繰り返し選んでもよい。) 1 1 ⑩ 1600 ① 40 ② 1 ③ ④ ⑤ 1600p 6 40p ⑦カ ⑧ 44 40 1600 D 40 1600 I の解答群 ⑩ 1600p ① 40p 144 4 1600p(1-p) 40 p(1-p) 5 40p(1-p) ⑦ 40 1600 ここで, ①よりm= ウであり,これはかを含む式である また,得られた実験結果では X=1000 であったので 3.081 X 1600 5 =R= 8 (1 が成り立つ。 さらに、①の エ については,次の仮定を適用して考えるものとする。 仮定 エ の式中に現れるかは,今回の実験での発生頻度Rの値 D 1600 p(1-p) R=555 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度 95%の信頼区間は

解決済み 回答数: 1