学年

教科

質問の種類

数学 高校生

29.3 このような証明方法でも問題ないですよね??

基本例題 29 絶対値と不等式の不 82 00000 次の不等式を証明せよ。 明などの基本の (1)|a+b|≦|a|+|6|| (2) |a|-|6|≧|a+b) (3) la+b+cl≦lal+10+| 指針▷(1) 例題 28 と同様に,(差の式) ≧0は示しにくい。 重要 de+pas\\&+D\² $328 30 解答 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'A'-B'≧0の の方針で進める。また、絶対値の性質(次ページの①~⑦) を利用して証明してもよい。』 (23)と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 *****RO CHART 似た問題 11 結果を利用 ② 方法をまねる (1)(|a|+|6|)²-la+b=a²+2|a||6|+b²-(a²+2a6+62) ◄|A|²=A² <|ab|=|a||6| 2 =2(|ab|-ab)≧0 よって la+b≧(|a|+|6|) 2 |a+b≧0,|a|+|6|≧0から la+6|≦|a|+|6| 別解] 一般に,一|a|≦a≦|a|,-|6|≦6≦|6| が成り立つ。 H この不等式の辺々を加えて (a+16)≦a+b≦|a|+|6| したがって |a+6|≦|a|+|6| de (2)(1) の不等式での代わりにa+b, bの代わりに―6と おくと |(a+b)+(−b)| ≤|a+b|+|-b| de+pas ゆえに |a|-|6|≦la+6| よって |a|≧|a+6|+|6| 別解 [1] |a|-|b|<0 のとき よって a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき |a+b1²-(|a|-|6|)²=a²+2ab+b²-(²-2|a||6|+62) =2(ab+lab)≧0 よって (|a|-|6|)2≦|a+b2 |a|-|6|≧0,|a+b≧0であるから [1], [2] から lal-1b|≤|a+bl (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦la|+|b+cl a+b+cl≦|a|+|6|+|c| 05 608- -B≦A≦B +S) ≤ ( ⇔[A]≦B ズームUP参照 DOCU (ay lal+1b/+/c/ a66650s |a|-|6|≦la+6| この確認を忘れずに。 |A|≧A, AI≧-A から -|A|≦a≦|A| P |a|-|6|<0≦|a+6 [2] の場合は, (2) の左辺, 右辺は0以上であるから, (右辺) (左辺)20を示 す方針が使える。 +04 105 (0+ 14-08- 133c¹2 (1) の結果を利用。 (1) の結果をもう1回利用。 (|b+cl≦|6|+|c|) 1+RB+++

回答募集中 回答数: 0
数学 高校生

130. このような具体例(図を書いてみる等)で規則性を考えて解く問題において、どういう感じで記述するのがいいのでしょうか??

582 ①① 基本例題 130 図形と漸化式 (1) ・・・ 領域の個数 平面上に,どの3本の直線も1点を共有しない, n本の直線がある。 次の場合、 平面が直線によって分けられる領域の個数をnで表せ。 (1) どの2本の直線も平行でないとき。 (2) (2) 本の直線の中に, 2本だけ平行なものがあるとき。 指針 (1) n3の場合について,図をかいて考えてみよう。 ヨコ 解答 an (1) n本の直線で平面が α 個の領域に分けられているとする。 (n+1) 本目の直線を引くと,その直線は他のn本の直線で (n+1) 個の線分または半直線に分けられ、 領域は (n+1) 個 だけ増加する。 ゆえに An+1=An+n+1 ¿+(T+5√]$¬1+ よって an+1-an=n+1 また a₁=2 数列{an}の階差数列の一般項はn+1であるから, n ≧2の とき これはn=1のときも成り立つ。 201 ゆえに, 求める領域の個数は __n²+n+2 2 (図のD1~D』)であるが,ここで直線ls を引くと,ls は 42=4 l1,l2 と2点で交わり、この2つの交点で ls は3個の線分また は半直線に分けられ, 領域は3個 (図のDs, Ds, D7) 増加する。 よって as=az+3 2.2-0 PARTY 同様に, n番目と(n+1) 番目の関係に注目して考える。 n本の直線によって α 個の領域に分けられているとき, (n+1) 本目の直線を引くと 域は何個増えるかを考え, 漸化式を作る。 2-14 (2) (n-1) 本の直線が (1) の条件を満たすとき, n本目の直線はどれか1本と平行になる から (n-2) 個の点で交わり, (n-1) 個の領域が加わる。 n-1 an=2+Σ(k+1)=- k=1 n²+n+2 2 (2) 平行な2直線のうちの1本をeとすると,l を除く (n-1) 本は (1) の条件を満たすから,この (n-1) 本の直線で分けら れる領域の個数は (1) から (8+.0) an-1 更に,直線ℓを引くと,ℓはこれと平行な1本の直線以外の 個の点で交わり の領域が増え よって、求める領域の個数は an-1+(n-1)=- (n−1)²+(n−1)+2 2 n²+n 2 +(n-1)=- n=3 Ilz D₂ [類 滋賀大] D3 Do D [=8+₁0 D₁ k=1 Σ(k+1)="Ek+ Z1 =(n−1)n+n-1 D2 a3=7 人 一 (n+1) 番目の直線は n本 その直線のどれとも平行でな いから,交点はn個。 (1) の結果を利用。 l DA αn-1 は, (1) の annの 代わりにn-1 とおく。 e

回答募集中 回答数: 0