学年

教科

質問の種類

数学 高校生

(1)(2)のどちらも絶対値を求めてから計算をはじめていますが、これは何を表しているんですか?

515 重要 例題 96 複素数の極形式 (2) 次の複素数を極形式で表せ。ただし、偏角010≦0<2πとする。 -cosa+isina (0 <α <π ) (2) sina+icosa (0≦x<2) 偏角の範囲を考える 0000 ・基本 95 既に極形式で表されているように見えるが,r(cos+isin) の形ではないから極形 指針 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 (1)実部の符号 - を + にする必要があるから, cos (π-0)=-cosA を利用。更に 虚部の偏角を実部の偏角に合わせるために, sin (π-0)=sin0 を利用する。 (2) 実部の sin を cos に, 虚部の cos を sin にする必要があるから, cos(7-0)=sinė, sin(7-0) 0 =cose を利用する。 2 また,本問では偏角 0 の範囲に指定があり, 002 を満たさなければならないこと 注意。 特に(2)では, αの値によって場合分けが必要となる。 CHART 極形式 (cos+isin) の形 三角関数の公式を利用 (1) 絶対値は (-cosa)+(sina)=1 -cosa+isina=cos(π-a)+isin (π-α) cos(-b)=-coso sin(0)=sin0 3章 1 複素数の極形式と乗法、除法 解答 また ① 0<<より,0<π-α <πであるから,①は求める極 形式である。 偏角の条件を満たすかど うか確認する。 (2) 絶対値は (sina)²+(cosa)² =1 058527 また ここで π sina+icosa=cos| cos(-a)+isin(-a) cos(-9)=sine Ome のときであるから,求め <2mから 2 る極形式は sinaticosa=cos | π a ゆえに, αの値の範囲に よって場合分け。 sin(-)-cos o π <<2のとき,偏 2 (-a)+isin(-a) π 3 <α <2のとき π 2 < -a<0 2 2 各辺に2を加えると、1/11/22であり、 52 -π 5 COS oly なお s(-a)= cos(-a), COS sin(-a)-sin(-a) よって, 求める極形式は sina+icosa cos(-a)+isin(-a) 角が0以上2 未満の範 囲に含まれていないから, 偏角に2m を加えて調整 する。 COS (+2nz)=COS sin(+2nx)=sin [n は整数] 練習 次の複素数を極形式で表せ。 ただし、偏角0 は 002 とする。 396 (1) cosa-isina (0<a<x) (2) sina-icosa (0≤a<2π) PP

未解決 回答数: 0
数学 高校生

2番の問題がわかりません。2枚目のやつが私が解いたやつです。-1/2より小さい範囲を求めているのにどうしてそれ以外の範囲も答えなのか教えて欲しいです

705 基本例 例題 145 002 のとき, (1) 2cos20+sin 指針 複数の種類 ① (1) ② (1) は このと ③ ②で の値 CHAR 234 基本 例題 144 三角方程式・不等式の解法 (1) 002 のとき,次の方程式、不等式を解け。 (1) √2sin(6+)=1 ・おき換え 2 cos(20- π 3 5-1 指針 解答 ()内でおき換えると (1) √2 sint=1 ずこれを解く。このとき, tの変域に要注意! 例えば,(2) 000 (2) 2cost≦-1 となるから、 020≦20 <2.2→ π つまり, 2cost≦-1 を-- -1≦t<4/1の範囲で解く。 ≤20-1 CHART 変数のおき換え 変域が変わることに注意 (1)+q=t ...... ① とおく。 0≦0<2であるから 50+<2x+) π 6 すなわち π 13 < π 6 6 この範囲で√2 sint=1 すなわち sint=1/2を解く 3 と t= π ...... 4' 4 ①から=t-π π 3 ② を代入してθ= (2)20=t とおく。 0≦0<2であるから >82 π -≤20- π π <4- 3 3 11 すなわち π (1) 方程 y 整理 1 解答 数) -1 0 7 π 12' 12 と 8 t ・π, よって 4 3 この範囲で2cost≦-1 すなわち cost≦- Asis, rsts or 3 12 17520-1*, *≤20-10, 10 われめるは を解く y 4 10 2 3 1 3 3 8 1 10 1 x 3 3 ゆえに20 5 π, 3л≤20≤⋅ 3 113 T よって101212/21/2 TO 5 ・π, 32 練習 0≦2のとき,次の方程式、不等式を解け。 ② 144 1) tan(+)=√3 (2) sin(-)-1 ゆえ よっ 0≤0 S (2) $14 (3)

未解決 回答数: 0