学年

教科

質問の種類

数学 高校生

この問題の⑵なんですが、 三枚目のm>4あたりの場合分けで、 場合分けⅠは②の点が3より上にあることが 条件なのに、なぜ場合分けⅡでは②上の点が③より下、または③の上にあるのが条件なんですか? (Ⅰは5,24という上の点を基準にしているのに Ⅱで下の3,8を基準にしている理... 続きを読む

102 2次方程式・2次不等式の整数解 整数mに対し, f(x)=x-mx+"-1 とおく。 (1) 方程式f(z)=0 が,整数の解を少なくとも1つもつようなの値を求め よ。 (2) 不等式 f(x) ≧0 を満たす整数xが,ちょうど4個あるようなmの値を求 めよ。 (秋田大) f(x) の式にはmの1次の項しか含まれていないことに着目する と, f(x)=0, f(x) ≧0 は “パラメタの分離” によって, 放物線 精講 y=-1と直線y=m(x-121) の関係に帰着されます。 解答 また,整数問題とみなすと, (1)では解と係数の関係を利用して2つの整数解 の満たすべき関係式が導かれます。 (2)では, 不等式 f(x) ≧0 を満たす整数が ちょうど4個であるとき, 不等式の解の区間幅からmを絞りこむ方法もありま す。 (1) 2次方程式 f(x)=0, つまり x2-mx+ -1=0 m x2-1=mx ²-1= m(x-1) ......1 の実数解は放物線y=x2-1 ・②と直線 y=m(x-1) •••••• ③ の共有点のx座標に等し 第1章 ① において, (2解の和)=mが整数であるから, 解の1つが整数のとき、 他の解も整数である。した がって“②③ 2つの共有点をもち,それらの 座標が整数である”..… (*) ようなmの値を求め るとよい。

回答募集中 回答数: 0
数学 高校生

186. このような記述でも問題ないですよね? またこの類の問題ではほとんどの場合互いに素を用いるように思うので、互いに素を使いたい、そして有理数の性質(m/nでm,nは整数でn≠0)よりこのような証明方法になるということですよね? また、有理数であることを仮定してから、「... 続きを読む

演習 例題186 指数方程式の有理数解 (1) 3*=5 を満たす xは無理数であることを示せ。 (②2) 35-2y=53-6 を満たす有理数x,yを求めよ。 m (m,nは整数,n≠0) と表される数を有理数といい, 有理数でない n 指針 実数において, ものを無理数 という。 (1) 無理数であることの証明では, 有理数であると仮定して, 矛盾を導く (背理法)。 (2) 方程式1つに変数がx,yの2つ。 有理数という条件で解くから, (1) が利用できそう。 底が3,5であるから, 3' =5 [(1)] の形にはならないことを用いる。 解答 (1) 3=5を満たすxはただ1つ存在する。 そのxが有理数であると仮定すると, 3*=5>1 であるから m CHART 無理数であることの証明 (有理数) とおいて、 (1) n 背理法 事柄が成り立たないと仮定し て矛盾を導き, それによって m x>0で,x=- (m,n は正の整数)と表される。 =(a+事柄が成り立つとする証明法 (数学Ⅰ)。 n m 37=5 よって 両辺をn乗すると 3m=5n ① ここで,①の左辺は3の倍数であり,右辺は3の倍数ではな いから,矛盾。 よって, xは有理数ではないから、無理数である。… 3x-y+6=5x+2y (2)等式から 2) spol x+2y=0 と仮定すると, ② から x-y+6 3x+2y = 5 練習 ③ 186 x,yを有理数とすると, x-y+6, x+2y はともに有理数で x-y+6 x+2y ...... ゆえに このとき, ② から よって x-y+6=0 ④,⑤を連立して解くと も有理数となり, (1) により③は成り立たない Gram x+2y=0 000 3x-y+6=1 基本 167 x=-4, y=2 等式 20x10y+1 を満たす有理数x,yを求めよ。 3と5は1以外の公約数を もたない。 このとき,3と 5は互いに素 という。 3÷36=5÷5-2y 3x-(y-6)=5x-(-2y) ②から3-y+6)x+2y X = (5x+2y)x+2y (1) で3'=5を満たすは 無理数であることを証明し ている。 KH ④: x+2y=0 と仮定して, 矛盾が生じたから, x+2y=0 である。」< 40 T810 Op.294 EX120 53

回答募集中 回答数: 0