学年

教科

質問の種類

数学 高校生

1:8についてです 1と8がそれぞれ赤い部分なのか青い部分なのかはどのようにしてわかるのでしょうか?

練 問 84 2つの放物線で囲まれた図形の面積 2つの放物線y=3x +12x ①, y= 5x-12x・・・ ② で囲まれた図形をF とする。 (1) 図形Fの面積Sは, S アイ である。 (2) 放物線 ①②の原点 0 以外の交点をAとする。 直線 OA の方程式はy= ウ x である。 S₁₁: S₁ = I よって、直線 OA と放物線で囲まれる図形の面積を St, 直線 OA と放物線②で囲まれる図形の面積を S, とすると, オである。 (3) 直線 y=mx(m>ウ) が図形 F の面積を1:8に分けるという。 このとき,直線y=mx と放物線 ①で囲まれた [カキ] 図形の面積Sをm を用いて表すと, S, = m. [ケコ] となるから, m の値を求めるとm= である。 (1) 放物線 ①,②の共有点のx座標は, 2式を連立させて -3x + 12x = 5x-12x より よって, 図形Fの面積Sは x=0,3 S₁ = S = =-3x -3x2+12x)-(5x-12x)}dx =-8" x x(x-3)dx = -8.{-1/12(3-0)2}= (2)x=3を① に代入すると, y=9であるから よって, 直線 OA の方程式は y=3x であるから =S-3 = 36 A(3, 9) -3x2 +12x)-3x}dx 1 =-3fx x(x-3)dx= -3• -3.{-(3-0)} = 27 27 45 S = S + S2 より Sz = S-S=36- 2 2 27 45 したがって S1 S2 = =3:5 2 A St 0 3 S S₁ = −3 ſ*x(x− 3)dx S2= =S(3x-(5x-12x)}dx (3)m>3において, 直線 y=mxが0<x<3 の範囲で放物線 ①と 交わるとき, y = mx と ① を連立させて x{3x-(12-m)}= 0 より x = 0, 12-m 0<- <3より3m<12 3 12-m 3 Ss= 12-m 3 mx = -3x2 +12x {(-3x²+ 12x) - mx}dx =-3 12-m 12-m -3√ √(x - 12m)dx --3-1-1/2 (12="_o)'}= (12-m) = =3 3 54 直線 y=mx が図形Fの面積を1:8に分けるとき, =-5x(x-3)dx であるから,定積分の値を計算 しなくても S:S2 = 3:5 とわ かる。 (12-m)3 9S3 S が成り立つから 9. = 36 54 よって (12-m)=216 12-m は実数であるから, 12-m=6より これは3<m 12 を満たすから m = 6 090 m = 6 216=6 放物線と1直線,2放物線で囲まれた図形の面積は,∫(x-a)(x-B)dx = 1/2(B-α) を利用せよ 6 (p.171) 右の図のような面積を求めるときには,必ず f(x-1)(x-B)dx=-1/2 (B-α)が利用できる。 6 この公式を用いるときは,面積を定積分で表してから,x2の V KV B 係数αをくくり出して Saf (xa)(x-β)dx の形で表すことが大切である。5円

回答募集中 回答数: 0
数学 高校生

(1)の前提から分かりません 教えてください。

1からnまでの番号が書かれたn枚のカードがある。 このn枚のカードの中か ら1枚をとり出し, その番号を記録してからもとに戻す. この操作を3回くり返 す.記録した3個の番号が3つとも異なる場合には大きい方から2番目の値を x とする. 2つが一致し、 1つがこれと異なる場合には,2つの同じ値をXとし 3 つとも同じならその値をXとする. ドが5枚 (1)確率 P(X≦k)(k=1, 2,......,n) を求めよ. (2) 確率P(X=k) (k=1, 2, 思考のひもとき ..... n) を求めよ. (千葉大) UNI 1.P(X≦k) とはXがk以下となる確率のことである. 2P(X=k) はX=k となる確率だから 解答 P(X=k)=P(X≦k) P(X≦k-1) (1) 記録する3個の番号の並び方は ㎥通りある.(どれが起こるのも同様に確からしい) 3つのうち,k+1以上の枚数は, 0, 1, 2, 3のいずれかである. このうちX≦k となるのは次のいずれかのとき. (i) 記録した3個の番号がすべて以下のとき(つまり,k+1以上が0枚のとき) この場合は通り. 2 () 記録した3個の番号のうち1つがん+1以上(a とする), 2つがk以下(b,cと する)のとき(つまり,k+1以上が1枚のとき) OSI ak+1よりは b≦k, c≦kより6cの選び方は n-(k+1)+1=n-k(通り) (通り) aが3回のうちのどこで出るかは C=3(通り) 3.k2(nk) 通り よって、この場合は (i), (ii)は排反だから P(X≦k)= k3+3k²(n-k)_3nk2k n 3 n 2) (1)の結果を用いると

回答募集中 回答数: 0
数学 高校生

マーカーのところをどうやってやったのか途中式を教えていただきたいです。

例題 32.5 確率変数の平均・ 標準偏差平 **** 袋の中にn個(n≧3) の玉が入っている。 そのうちの2個は白玉で,残 りは黒玉である.この袋から1個ずつ玉を取り出していく。ただし、取り 出した玉は袋の中に戻さない. 白玉がはじめて出るまでに取り出される黒 玉の個数Xの平均と標準偏差を求めよ。 [考え方 たとえば, X=3 となるのは、3回目まで黒玉が取り出され, 4回目にはじめて白玉が 取り出されるときで,その確率は,P(X=3)=n-2.n-3.n-4. 2 解答 n n-1 n-2 n-3 である. 最初に袋の中に入っている黒玉の数はn-2 (個) であるから, 確率変数Xのと り得る値は, 0, 1,2,3, n-2である. また,Xが0となる確率は,P(X=0)=である 2 3-(k-1)-2- n 1≦k≦n-2 のとき, る。Xが P(X=k)=n-2.n-3 n-4 n-k-1 2 _n-k-1 2 nn-1n-2 よって、黒玉の個数Xの平均は、 2 n-2 n k=1 ( n 2 n(n- -1) となる。 2 al * n 赤の2(m-1-2月33) n-2 3 Z- また, n + J=0.01 E(X)=0-+2k. n-k-1 2 n-2 n-2 (n-1)Σk-k² k=1 (n-1) (n-1) 1/2(n-2)(n-1) -1 (n-2)(n-1)(2-3)} 2 n-2 n-k-1 E(X2)=02-+ n k=1 2 n-2 Σk²(n-k-1) n(n-1)=1 "-2 n-1 2(n-k-1) k(n-k-1)-1) n-1 家めよ k=1 を5回繰り返し、 k=n(n+1) Σk²= n(n+1)(2n+1) k=1 り出すとき、 (Z)を求めよ。 E+ X-X (S) n-k+1n-kn 2 -2 n-1 n(n-1) xn(n-1)1 21 {(n−1) Σk k=1 k=1 + n(n-1){(n-1)-(n-2)(n-1)(2n-3)-(n-2) (n-1)(n-2) (2n-3_n-2) 1)(n-2)(2m-38-2)=(-1)("-2)を求めよ。 よって,分散は, V(X)=E(X°)-{E(X)}よ (n- (n-2)(n-1)} 3 の (n-1)(n-2) 6(n-2)²= (n-2) (n+1) 18 したがって、標準偏差は, (X)=V(X)= V /2(n-2)(n+1) 6 練習 赤い本が2冊、青い本がn冊ある。このn+2 (冊)の本を無作為に1冊ずつ選び、 B2.5 本棚に左から並べていく。 2冊の赤い本の間にある青い本の冊数を X とすると *** Xの平均と分散を求めよ. 第2 F B B C C

回答募集中 回答数: 0
数学 高校生

なぜ、直線Mにおいての任意の複素数をZと表すことができるんですか??直線Lの方でもZが使われてて違うものなのになぜ同じ文字でおけるのか教えて欲しいです!!

B(β) z-a z-a よって, 7-B Y-B. Think 例題 C2.36 垂線の方程式,垂心 **** 複素数平面において, 単位円周上に異なる3点A(a),B(β),C(y) を 定める. ことを証 (1) 点Aから直線 BC に垂線lを引くとき, この垂線ℓ上の任意の点 D1S P(z)について、z-a=By (2-2) が成り立つことを証明せよ。 (2) △ABCの垂心を α, β, y で表せ. 考え方 (1) 点A(a),B(3), C(y), P(z) について,|a|=|β|=|y|=1 解答 APLBC または z=a z-a (山形大改) (2) 点Bから直線CAに垂線を引くとき,この垂線上の任意の点Q (ω) について (1) 1-1が純虚数または01-8=-1 と同様の式が成り立つ垂心は z=w となる複素数である. (1) Pは垂線上の点なので, AP⊥BC または z=α より z-a -は純虚数または 0 Y-B (A(α)→0(0) とな [B(B) → 0(0) るように平行移動す Pzると,P,Cは、それ A(α)ぞれ [P(z)→P (z-a) IC(y)→C^(-3) YA P 1. 0 -1 1 上にある であるから, C(r)-1=0 に移る. z-a z-a A 7-B Y-B 両辺に y-βを掛けて, P'(z-a) z-α=-(y-β) (28) Ala ・① ここで, 3点A(a),B(β), C(y) は単位円周上の点よ り |a|=|β|=|y|=1 C'(r-B) よって, zキαのと したがって,|a|=||=|y|=1 であるから, OP OC を aa=βB=yy=1より, 0のまわりに今だ a= B= y= .....2 a B' A (0-8)=0 け回転して実数倍 したベクトルより ②①に代入すると, Z z-a=-(y-β) =BY (1) 1 1α18 8 2- a a =(β-y)- B-Y B BY よって 00: Z ・③ となり、題意は示された「円 z-a=k cos a=k(cos +isin(7-8) RY=ki(7-8) は0でない実数) よって zaki (純虚数 または0) CES ③は直線lの方程式 (1+1を複素数で表現した 2

回答募集中 回答数: 0
数学 高校生

(2)で「-1/√3<m<1/√3」からXの範囲を求めるとき、 解答のようにではなくて、三枚目のように考えてしまいました。 これでうまく求められないから、 解答のようにYの範囲を求めて図を描くことで、Xの範囲を求めよう! っていう思考回路ですか?

偶数の関係を使った ④よりm=1/2で⑤に代入しY=1/2x2-2x ③ ④ により,X < 0 または 8 < X 2 X,Yをx, y に書き換え, 求めるMの軌跡は よって, X=2m……… ④ であり,Mは①上にあるから,Y=mX-4m...⑤ X D=m²-4m>0 .. <0 または 4<m (3)P,Qの座標をα,βとし,M(X, Y) とおくと,x=α+B αβは②の2解であるから,解と係数の関係により,a+β=4m 2 ③ これから軌跡の限界が出てく P,Qの座標をm で表す必要 このようなときは具体 急がず、とりあえず文字でお ⑤ではなく. 34 y=14x²-2x Y= 16 y= x²-2x (x<08<x) であり,右図太線である (○を除く) 8 I 1-1/2 (+) (a+B)-2a8 8 =2m²-4m と ④ からYをXで表しても たことはないが(本間の場 ⑤ (直線上にあること)に着 るのがうまい。 補助に考える。 円が を通るときは別に調 く。 12 演習題 ( 解答は p.104) 円(x-2)2+y2=1と直線y=mzが異なる2点P, Qで交っているとき, (1)の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は その座標を明示せよ). (群馬大理工,情/改題) Mが直線上にある をうまく使う、なお 形的に解くことも る.

回答募集中 回答数: 0
数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0