学年

教科

質問の種類

数学 高校生

最後のd^2からdを考える際、X=3はそのままなのに、18は3‪√‬2になっているのは何故ですか?

18 基本 例題 67 最大 座標平面上で,点Pは原点Oを出発して, x軸上を毎秒1の速さで点 (6,0 0まで進む。この間にP, Q間の距離が最小となるのは出発してから何秒後 まで進み,点Qは点Pと同時に点 ( 0, -6) を出発して,毎秒1の速さで原点 か。また,その最小の距離を求めよ。 CHART & SOLUTION 基本 t秒後のP, Q間の距離をd とすると,三平方の定理からd=f(t) の形になる。ここで f(x)の最大・最小 平方したf(x) の最大・最小を考える d0 であるから,d=f(t)が最小のときdも最小となる。 解答 0≤1≤6 出発してからt秒後のP, Q 間の距 離をdとする。 P, Qは6秒後にそ れぞれ点 (6,0), (0, 0)に達するか ・① ら YA 6 x このとき, OP=t, OQ=6-t であ るから,三平方の定理により d2=12+(6-t)2 =2t2-12t+36 =2(t-3)2+18 tのとりうる値の範囲。 点Qのy座標は t-6 基本形に変形。 ① において, d は t=3 で最小値18 をとる。 d0 であるから,dが最小となるときdも最小となる。 よって, 3秒後にP,Q間の距離は最小になり,最小の距離は √18=3√2 軸t=3は①の範囲内。 この断りは重要! INFORMATION dの大小はdの大小から 例題では,d=√2+62 の根号内の a2+62 を取り出して まずその最小値を求めている。 これはd>0でd が変化す るなら, dが最小のときも最小になるからである。 右のグラフから, 大B2 (x≥0) d² A2 A≥0, B≥0, d≥0 * Ad≤B A²≤d²≤B² つまり,d≧0 のときdの大小はdの大小と一致する。 0 Ad B X 小 大

未解決 回答数: 0
数学 高校生

数学 一枚目が問題と解答で二枚目が自分の考えなのですが、解答は微分で考えてて自分は判別式で考えて答えは同じなのですが、いいのでしょうか?

要 例題 176 2 曲線が接する条件 「共 00000 2つの放物線y=x2 と y=(x-α)2 +2 がある1点で接するとき、定数α の値を求めよ。 CHART & SOLUTION [類 慶応大] 基本174 重要 177 2曲線y=f(x), y=g(x)がx=p の点で接する条件 f(b)=g(カ)かつf'(b)=g'(p) 「2曲線が接する」 とは, 1 点を共有し、かつ共有点における接線 が一致すること(この共有点を2曲線の接点という)。 接点のx座標をとおいて 接点を共有する ⇒f(b)=g(b) 接線の傾きが一致するf'(b)=g' (b) を満たすαの値を求めればよい。 解答 f(x)=x2, g(x)=(x-a)2 +2 とすると f'(x)=2x, g'(x)=-2x+2a 2曲線が1点で接するとき, その接点のx座標をとすると f(p)=g(カ) かつ f'(b)=g'(p) y=f(x)/ y=g(x) p x g(x)=(x-a)2+2 =-x2+2ax-a2+2 f(p)=g(p) が成り立つ。 接点のy座標が一致 よって2=(p-a)2+2 ① *S=V f'(p)=g'(p) Ch 2p=-2p+2a ② 接線の傾きが一致 ②から a=2p ③ 意味する これを①に代入してp=-(p-2p)+2 ゆえに P2=1 ③から,αの値はのと為 p=1のとき -2) これを解いてえにか=±10 α=-2, p=1 のとき a=2 式は a=-2 ly=f(x) 2=2+2から inf. 接点の座標は 275 xa=-2 のとき (-1, 1) y=f(x)+α=2 のとき (1,1) 接線の方程式は 左=2のとき y=-2x-12 x +a=2のとき -10 x の。 01 DS 方 y=g(x) y=g(x) 上の数 以上の 関数 方針 となり、方針図が開範囲が広いことが BACTICE 1769 .0=v - 1,0=D y=2x-1 24010

解決済み 回答数: 1