学年

教科

質問の種類

数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1
数学 高校生

この文がなぜ①から言えるのですか? 解説お願いします🙇‍♀️

DOO 本71 10 くる =a, 例題 31 線分の垂直に関する証明 日本 基本 00000 ABCの重心をG, 外接円の中心を0とするとき,次のことを示せ OA+OB+OC=OH である点Hをとると, Hは △ABCの垂心である。 (2) (1)の点Hに対して, 3点0,G, Hは一直線上にあり GH=2OG 指針 [類 山梨大 ] 基本 25 基本 71 ① 三角形の垂心とは,三角形の各頂点から対辺またはその延長に下ろした垂線の交 点である。 AH≠0, BC ≠0, BH 0, CA ≠0のとき AHLBC, BHICA AH BC=0, BH CA=0...... であるから,内積を利用して, A〔(内積)=0] を計算により示す。 ◯は △ABCの外心であるから, OA|=|OB|=|OC| も利用。 CHART 線分の垂直(内積)=0を利用 (1)∠A=90°,∠B キ90° としてよ A 直角三角形のときは 635 1 G) 1815 解答 い。 このとき,外心Oは辺BC, CA上にはない。 **** ① AOO BC CAUAY OH=OA+OB+OC から AH OH-OA=OB+OC ゆえに A・BC =(OB+OC) (OC-OB) よって =OC-OB=0. 同様にして B BH CA=(OA+OC)·(OA-OC) =|OA|-|OC|=0 また,① から AH = OB+OC = 0, BH=OA+OC≠0 よって, AH ≠0, BC≠0, BH = 0, CA 0 であるから である。 AHLBC, BHLCA C)=10=408+00S AO+50 LS (数学A) 目 C=90° とする。 このとき,外心は辺 AB 上にある (辺AB の中 点)。 直径に対する円周角に 必ず90% IBC=OC-OB (分割) [△ABCの外心0→ 50+100A=OB=OC すなわち AH⊥BC, BHICA 15? したがって, 点Hは△ABCの垂心である。 検討 検討 外心、重心、心を通る直 線 (この例題の直線 Olar=9OGH) をオイラー線 と いう。ただし、正三角形 は除く。

解決済み 回答数: 1