学年

教科

質問の種類

数学 高校生

aは集合Aの要素とはどういう意味ですか? また、集合Aが集合Bに含まれるのとどのように違うのですか?

NMURI 37 (1 2 ③ などで 表現にできる きる る POSS Ⅰ. 2つの集合に対して使う記号 (=,,,,U) ① 見ての通り2つの集合が同じものということです。合 B ② ⊂ ⊃: ACB とは 「集合Aが集合B 第2章 [21] に含まれる」ということで, ベン (Venn) 図にすると (a) <図I> の状態です. ③n, U ルの両方に含まれる部 「集合A と集合B A∩Bとは <図I> ・B- A ・B 14 AND わせる 「分」を指し, AUB とは「集合A, 集合 Bの少なくとも一方 に含まれる部分」を 4RE A∩B AUB <図II> 指します。ベン図にすると,〈図II 〉の状態です. Ⅱ. 1つの集合とその要素に対して使う記号 (,,,) とは,「αは集合Aの要素である」という意味です。 III は空集合を表す記号で,{}という書き方もあります。 空集合とは、全く要素をもたない集合のことです。 解答 (1) PQ は12の倍数を表す集合だから, RCPNQ ア・・・① 注 P,Q,R の包含関係は, 右図のようになっています (2)32は4の倍数であるが, 6の倍数でも24の 倍数でもない. 演習問題 21 R POQORも表現として よって、Q したがって, イ・・・ ② は正しいが選択肢にない (1) 21において, POQに属する最小の自然数 αを求めよ. (2) a ウ R である. ただし, ウ は 〈解答群I> から選べ.

解決済み 回答数: 1
数学 高校生

⑴の(iii)の別解なのですが、三次関数とかでもないのにどうして増減表を使って求められるのかわかりません。あと単調増加に極値はあるものなのですか。よろしくお願いします🙇

4 次の問題について,しずかさん、れいさん,ゆうだいさんの3人が議論をしている。 問題ある学校の文化祭では、 縦8mの垂れ幕が垂直な壁にかかっていて, 垂れ幕の下端があ る人の目の高さより2m上方の位置にある。この人が壁から何m離れて見ると, この垂れ幕 の上端と下端を見込む角が最大となるか。 しずか 右図のように、 直線 l を壁として, 点Aを垂れ幕の上 端, 点Bを垂れ幕の下端, 点Dを垂れ幕を見ている人 の目の位置とした。 この垂れ幕の上端と下端を見込む角 ∠ADB の大きさを0とおいて, 0が最大となるときの 点Dの位置を求めればよい。 ・れい 0が最大となるときの点Dの位置を求めたいから,点D から直線 l に垂線 DC を下ろし、 線分 DC の長さを xm とする。そして, 三角比を使って式を作ればよい。 ゆうだい D l A 18m B 12m 角度の問題だから, 2点A, B を通り半直線 CD に接する円をかいて, 円周角の定理あるいは 円周角の定理の逆を使えばよい。 このとき、次の問いに答えよ。 (1) 図とれいさんの考えを使って問題を解くとき、次の小問に答えよ。 (i) ∠ADC= α, ∠BDC = β として, tan0 を tana, tan β を用いて表せ。 (ii) tan 0 を x を用いて表せ。 (iii) 0 が最大となるときの, tan0 と xの値をそれぞれ求めよ。 (2) 図とゆうだいさんの考えを使って問題を解くとき,この人がこの垂れ幕の上端と下端を見込 む角が最大となる位置は, ゆうだいさんのかいた円と半直線 CD との接点になることを示せ。

解決済み 回答数: 1
数学 高校生

うすくまるでかこっているところが問題によって下記かがちがくてよくわかりません。教えてください。

なったと判断できる。 28 この地域のイノシシが寄生虫Aに感染している割 よって、 区間の幅が狭いのは、信頼度95%の信頼 区間である。 合を シシの感染個体の比率は 198 396 対立仮説は すると、帰無仮説は0.55, 0.55 である。 また、 今回の調査で捕獲したイノ = 0.5 である。 1 (2) (1)より, 信頼区間の両端は 0.04 12.56 1.96 =12.56±0.01568 √25 □2 帰無仮説が正しいとすると, 標本における感染個体 0.55.0.45 の比率がの分布は正規分布 N (0.55, と 396 見なせる。 よって P(-0.55 ≥ 0.5-0.551) よって, 信頼度 95%の信頼区間は 12.54432 d≦12.57568 小数第3位を四捨五入すると, 12.54mm以上 12.58mm 以下となる。 (3) 信頼区間の幅を0.008mm以下にするから,計 測回数をnとすると, (1) より 0.55 0.05 =PI 0.55.0.45 0.55-0.45 V 396 396 =P(Z|≧2) =2P(Z≧2) =0.04550 <0.05 したがって, = 0.55 という帰無仮説は棄却される。 すなわち、この地域のイノシシが寄生虫 Aに感染し ている割合は先行調査と異なると判断できる。 Let's Challenge 2 1_(1) 標本平均の平均は母平均に等しいから E(X) = 400 標本の大きさが36であるから, 標本平均の標準 偏差は 70 0.04 2.1.96. 0.008 よって n≧384.16 ゆえに、少なくとも385回計測すればよい。 布は,正規分布 N (0, と見せる。 3 (1) 帰無仮説は m = 0, 対立仮説は m≠0 である。 (2) 帰無仮説が正しいとすると, 標本における重さ の平均から表示されている値を引いた値m' の分 2.52 225 よって P(m′-01≧ 0.32) P ( \m\ 0.32 2.5 2.5 225 SHP225 =P(Z≧1.92) =2P(Z≧1.92) 0.05486>0.05 したがって, m = 0 という帰無仮説は棄却されな いにで (1)

回答募集中 回答数: 0