学年

教科

質問の種類

数学 高校生

(2)なんですが、2と3は互いに素だから、指数比較をして連立方程式を解くっていう方法ではダメなのですか?

5 (1) 2'3を満たすは有理数でないことを証明せよ。 を満たす有理数x,yを求めよ。 (2) 22 (3) (n²-3n+3) 8+15=1 を満たす自然数nのうち、最小なものと最大なも <考え方> (1) 23 を満たす有理数ヶが存在すると仮定して矛盾を導く。 (2) (1) の結果を利用する. (3) a>0 のとき, α=1 となるための条件は, α = 1 または 6=0 で (1) 2'=3 を満たす有理数が存在すると仮定する. 2"=3>1より, >0 であるから, =m (m,nは自然数) ・・・・・・① 72 とおける. よって, 27 = 3 両辺をn乗すると 2m=3n ここで,m,nは自然数より 2 は偶数, 3" は奇数で ある. つまり、②は成立しない. したがって, ① とおくと矛盾が生じるから, rは有理 数でない. (2) 2×33y=2-y+23x より,. 2x+y-2=3x-3y .....1 x-3y0 と仮定して, ① の両辺を (= x+y-2 x-3y 0-1X1440) 1 x-3y x+y-2 2 x-3y =3 ここで, x,yは有理数より, x+y-2, x-3yも有理 数であるから, も有理数となり、(1)により②は ・乗すると, (3) (n²-3n+3)²-8n+15=11450 成立しない. よって, x-3y=0 でなければならない. このとき, ①より, 2x+y-2=1 となり, x+y-2=0 で ある。 したがって, x-3y=0 かつ x+y-2=0 より, 背理法で示す 1 (偶数)= 両辺を2- 2"=3の

回答募集中 回答数: 0
数学 高校生

この共通テスト対策がどの問題集の問かわかる方教えてくださいm(_ _)m また四角1~11の解答が無くて見せてほしいです。

ス ① Oを原点とする座標平面上において,円 ただし, kを定数とする。 次の問いに答えよ。 (1) PCと直線が共有点をもつための必要十分条件は、次の条件かのいずれかが成り立つことである。 x²+y²=25 : 連立方程式 が実数解をもつ x+2y=k q : 原点と直線の距離がア 以下である p q のいずれかの条件を用いることにより, 円Cと直線が共有点をもつようなkの値の範囲は, イ ウ SRS イ ウ と求められる。 ト対策問 題 t (x+ +(y+t) =25+kt+ I (2)を実数とし, Cと1の式からつくられる方程式 (x+y-25)+f(x+2y-k) = 0 において, k=10のとき, (x²+y2-25) +t(x+2y-10)=0 ・・・・・(A) k=20のとき, (x2+y²-25) +t(x+2y-20)=0 ......(B) オ カ 直線x+2y=kを1とする。 =25をCとし, である。 これらの方程式の表す図形について考える。 まず, 方程式(x+y-25) +t(x+2y-k) = 0 を変形すると となる。 右辺の正負に注目すると, (A) の方程式が表す座標平面上の図形は, キ (B) の方程式が表す座標平面上の図形は, ク キ クには正しいものを次の①~④のうちから一つずつ選べ。 ⑩tの値にかかわらず, 円である。 ①t の値にかかわらず, 存在しない。 tの値に応じて,円であるときと, 1点であるときの2種類がある。 ③tの値に応じて, 円であるときと, 図形が存在しないときの2種類がある。 ④tの値に応じて, 円であるとき, 1点であるとき, 図形が存在しないときの3種類がある。 円C上を動く点Pがある。 点Pの座標を(X,Y) とするとき, 次の(i), (i)のX,Yの式について調べよう。 _i) X +2Yのとり得る値の最大値を求める。 (1) の結果を用いると,X+2Yの最大値はイウであり、このときのX, Yの値は, X=√ヶY=コサ] である。

回答募集中 回答数: 0