学年

教科

質問の種類

数学 高校生

解答の場合分けがこのようになっている理由がわからないです。なぜ1で分けているのか教えて頂きたいです。

回転 36 xy 平面上の2次曲線を 9x2+2√3xy+7y2 = 60 とする.このとき,次の各問いに答えよ. 215-36 と曲線 C は、原点の周りに角度0(001)だけ回転すると, ax2+by2 = 1 の形になる.0 と定数a, b の値を求めよ. (2) 曲線C上の点と点 (c, -√3c) との距離の最小値が2であると き,c の値を求めよ.ただし, c0 とする. アプローチ 〔神戸大〕 (イ)曲線を回転させようと考えるのではありません。曲線上の点を回転さ せて回転後の点の軌跡を求める感覚です. そこで曲線 C上の点を (x, y), これを回転した点を (X, Y) とし,x,yの関係式から x, y を消去して, X, Y の満たすべき関係式を求めると考えます.つまり x, y を X, Y で表 してC の式に代入するというストーリーです。そのためには (X, Y) = 「(x, y) を 0 回転した点」 という関係式ではなく (x, y) = 「(X, Y) を -0 回転した点」 という関係式を立式しましょう。これをC の式に代入したら出来上がり です. (口)点(x, y) を原点を中心に角 0 だけ回転した点を (X, Y) とすると, X + Yi = (cos 0 +isin0)(x + yi) です.実部と虚部を比較すると となります. X = x cos 0 - y sin 0, Y = xsin0 + y cos 0 (2)では曲線 C 上の点と (c, -√3c)との距離を考えるのではなく,とも に回転させた曲線と点との距離を考えます.

回答募集中 回答数: 0
数学 高校生

点と点を結んでいる線はなんでしょうか? 書く必要がある線ですか?

素数平面 素数平面 in a=a+bi を座標平面上の点(α, b) で表したと この平面を複素数平面 または複素平面という。 複素数の実数倍 α=0 のとき 3点 0, α, β が一直線上にある 2 共役な複素数 1. 対称 3. 複素数の加法, 減法 点の平行移動や平行四辺形の頂点として表される。 ⇔ β=ka となる実数kがある 点α と実軸に関して対称な点は 点αと原点に関して対称な点は 点αと虚軸に関して対称な点は 2. 実数 純虚数 5.08 3. 和・差・積・商 a+β=a+B, ⇔a=d αが実数 αが純虚数 α = -α, a≠0 3 絶対値 複素数 α=a+bi に対して 1. 定義 |a|=|a+bil=√²+62 3. 2点α, β間の距離は α -α a a a-8=a-B₁ aß=aß. (2) - B |B-al -a 154 次の点を複素数平面上に記せ。 STEPA O a=a+bi A(a) a=-a+bi a 16 2.性質|a|=aa, |a|=|-2|=|a| 実物 a=a+bi ax ✓ 158 a=-a-bi-baa-bi ✓ 159 A(2-3i), B(−3+i), C(−2−2i), D(3), E(-4i) △*155 (1) α=a+2i, β=6-4i とする。 3 点 0, α, βが一直線上にあるとき, 実数 aの値を求めよ。 (2) α=3-2i,β=b+6i, y=5+ci とする。 4点 0, α, β,yが一直線上に あるとき, 実数 b,cの値を求めよ。 37 □ 156 α=3+i, β=2-2i であるとき、 次の複素数を表す点を図示せよ。 (1) α+β (2)α-β (3) 2a+β (4) α-2β (5) -2a+β * 157 次の複素数を表す点と実軸, 原点, 虚軸に関して対称な点の表す複素数をそ れぞれ求めよ。 *(1) 1+i (2) -3+4i (3) -√2-3i *(4) 4-√3i *16 16

回答募集中 回答数: 0