学年

教科

質問の種類

数学 高校生

高一数学Iの三角比の問題です。 解き方を教えてください!

9. 次の会話の空欄にあてはまる数を入れよ。ただし,43と44は、 それぞれ下の記号 (ア)~ (ウ)から選べ。 【知識・技能】 【思考・判断・表現】 【主体的な学習】 解答番号43~50 三角形の辺の長さの求め方について、先生と太一さん,千晴さんが話し合っています。 -- 先生: 教科書p.105 の例2や問3では,「2辺とその間の角の大きさ」がわかっている場合に、残りの辺の長さの求 め方を学習しました。 太一:はい、覚えています。 余弦定理に与えられた辺の長さや角度を代入して、残りの辺の長さを求めました。 先生:では, 「2辺とその間にはない1つの角の大きさ」がわかっている場合には,残りの辺の長さを求めることが できるでしょうか。 千晴: 私はできると思います。 教科書p.103 の例題1問2では,正弦定理を使って辺の長さを求めました。 先生:そうですね。 でも、そのときに与えられた条件は、 「1辺と2つの角の大きさでしたね。 次のような場合に, 同じように正弦定理を利用して辺の長さを求めることはできますか。 (問題) △ABCにおいて,a=7,b=8,4=60°であるとき,c を求めよ。 千晴 : うーん・・・・。 正弦定理を使うと, sinB の値は求まりますが,辺の長さを求める式は作れそうにありません。 先生:そうですね。 では, 余弦定理を使うとどうでしょうか。 千晴:余弦定理を使ってを求めるから,式「=43」を使うのかな。 でも, わかっているのは4の大きさだよね。 太一:じゃあ、4の大きさを利用できる式 「44」を使ってみたらどうかな。 先生:では, その式を使って解いてみてください。 途中で2次方程式が出てきますので、解き方を思い出しながら 考えてみましょう。 [解] 余弦定理により, 45=46+c²-2・46・ccos47° 43 この式を整理すると,48c+49=0 cについての2次方程式を解くと, (c-3) (c-50)=0 千晴:解けました。 の値は2つあるんですね。 太一:cが2つあるということは, 与えられた条件を満たす三角形は2通りあるということですか。 先生:その通りです。 実際に図をかいて確かめてみましょう。 (ア) 62+&-2bccosA (1) ²+a²-2cacosB 44 45 46 よって,c=3,50 47 48 () a²+b²-2abcosC 49 50

回答募集中 回答数: 0
数学 高校生

2枚目の問題を教えてください!お願いします🙇‍♀️

次の文章を読んで、ト キルケゴールは、近代の客観的真理を重視するあり方を批判し, 主体的真理を追求するこ と説いた。それによって人間本来の存在の仕方である 「実存」の現出を訴えた。 客観的真 理は理性によってとらえられる、万人にとって普遍的に認識される真理であるのに対して, 主体的真理はAである。 キリスト教的な世界観に強く依拠した生涯を送った彼にとって, そのような実存は、世俗的な人間的集団やそのような集団において共有される倫理感からは 決別し、自身を神の前に一人立つ ( 1 ) として獲得されるものであった。 彼は、それに いたる三つの段階を想定した。 それは(a) 美的実存,倫理的実存, 宗教的実存である。 一方、ニーチェによると, (b) キリスト教の禁欲主義的で平等主義的な倫理観は,自己を より高め、強くなろうとする衝動をもち得ない, または実現し得ない弱者が、そういった衝 動をもち、または実現しうる強者に対していだく怨恨感情である ( 2 )に依拠している という。彼はキリスト教的倫理観や世界観を否定する際に「神の死」 (「神は死んだ」)と いう表現を用いる。 神の死によって, キリスト教的世界観の直線的時間軸は崩れ, 円環上の

回答募集中 回答数: 0
数学 高校生

この問題を全部教えてください🙇‍♀️

3 : T(思考・判断・表現) 数直線上を移動する点Pがある。 点Pは, 原点を出発点とし, さいこ ろを投げて出た目によって次にように動く。 奇数の目が出たときは,正の向きに1だけ進む。 偶数の目が出たときは,負の向きに1だけ進む。 また, 点Pは出発したあと, 一度原点に戻ると, それ以降は次のよう に動く。 3の倍数の目が出たときは、正の向きに1だけ進む。 •3の倍数以外の目が出たときは,負の向きに1だけ進む。 さいころを投げて点Pが移動することを6回繰り返すとき, 次の ア オに適する数を入れよ。 (1) 6回移動し終わったときの点Pの座標が6である確率はア ある。 (2) 6回移動し終わったときの点Pの座標が2である確率を考える。 2回目の移動で原点に戻り、かつ6回移動し終わったときの点Pの 座標が2である確率は イ である。 4回目の移動で初めて原点に戻り、かつ6回移動し終わったときの 点Pの座標が2である確率はウである。 一度も原点に戻らず、かつ6回移動し終わったときの点Pの座標 が2である確率は I である。 これら3つの確率の和が6回移動し終わったときの点Pの座標が 2である確率である。 (3) 6回移動し終わったときの点Pの座標が2であるとき, 2回目の移 動で原点に戻っていた条件付き確率はオである。 で

回答募集中 回答数: 0
数学 高校生

空欄テ,ト、ナ,ニ、ヌ,ネ,ノについてです。 2枚目にも書いているように、私は両辺に6を掛けてから計算したのですが、項数求めるところでn²>1428となり答えがあいません。何が間違えているのか分からないのでよろしくお願いします。見にくくてごめんなさい。

数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 (選択問題) 次のように、1から始まる1個 2個 3個の奇数の列を順に並べてできる 数列 1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, 1, ... U 5個 1個 2個 3個 4個 を {an} とする。 この数列を、次のように群に分け、順に第1群, 第2群,第3群, ..….とする。 1 |13|1,3,5 |1,3,5,7|1,3,5,7,91, ….. 第1群 第2群 第3群 第4群 第5群 ここで,nを自然数とするとき,第n群はn個の項からなるものとする。また, jkを自然数とし、第n群に含まれる項α)と同じ値の項が,第1群から第n群ま でにちょうどk個あるとき, 第n群に含まれる項a, を 「k回目に現れる α;」のよ うに表現する。例えば、第5群の2番目の項である3は数列{an}の第12項であり, 「4回目に現れる3」 のように表現する。 1.3.5.7 +2+2 (配点20) (1) 第n群の最後の項をnを用いて表すと は数列{an}の第 である。 とき回目に現れる1は数列{an}の第 21 { n (l+n) Shinti 10回目に現れる1は数列{an}の第市 項である。また,kを自然数とする 第9項さいごは、anの3×9×10=45 1 1 -k²- オ) カ = k (k-1) + 1 = = = K²=-=- k + 1 項である。 第n群に含まれる項の和は に現れる1までの和は 1 ケ (-1)(1+R-1)+1 -k³ 項である。 +1 -k² + =1+(n-1)2=20-2+1 であり, 1回目に現れる = n 1 サ =20-1 であるから、数列{an}の初項からk回目 n(x+2n-1)=½nxxn = n² =k+/ =k+ */ //(k-1)(2R-2+1) (数学ⅡⅠ・数学B 第4問は次ページに続く。) -32 + (k-1)k (2k-1) 11 ( ア の解答群 On-1 1 ク (n-1)² Ⓒ/n(n-1) ②n+1 76 (2) を自然数とするとき、1回目に現れる3は第 の解答群 (同じものを繰り返し選んでもよい。) ①n² ② (n+1)^ Ⓒ/ n(n+1) ⑤/1/21(n+1 +1)(n+2) ⑩ 1/12n(n-1)(2n-1) ⑦/1/n(n+1)(2x+1) ③ / (n+1)(n+2)(2n+3 ) あり, N ヌネノである。 3 2n-1 2022 ({R-ÉR) (²k-1)/12138 2 2 ~ 3 k²³² - / k²= 1/k² + (k = {K² - {k² + ék 110 21 220 2310 目の項であり、数列{an}の第 チ ·(1+0) 31+z²+2 f (3) 数列{an}の初項から第n項までの和をSとする。 S>2023 となる最小のn をNとすると、数列{an}の第N項 αN は第 群のナニ番目の項で 第群に含まれる項の和r². 初項から最後までの保和は、 ////(m+1)(2m+1 数学ⅡⅠ・数学B -1² + 42n+1 タ グマ ス ·1+ 群の to 番 2 項である。 17万 {m(mer) (2mi+1) >2023 6m(+1)(2nit1) (m+1)(24ct() >1 m=18のとき12654> 121 m=1710710 <120 x 1934×12 1386

回答募集中 回答数: 0