学年

教科

質問の種類

数学 高校生

(2)のマーカーの式がどうやって出来るのか教えてほしいです。

B2-10 Think 例題 B2.6 漸化式と平均・分散 **** (1) 硬貨を5回投げて, 表の出た回数と裏の出た回数の差の絶対値をX。 とする. 確率変数 X の平均E(X) と分散 V (X) を求めよ. (2) (1) の X。 から始まり, 4X,=Xn-1+3 (n=1, 2, ......) によって定まる 確率変数の列 Xo, X1,X2, ....... Xn, ・・・・・・ がある. X, の平均E(X) と分散 V(X) を求めよ. 考え方 (1) たとえば、(表裏)=(1回 4回) (4回 1回)のとき, X=3となる. 解答 またこのときの確率は, +50 (12)(2/2)+(1/2)^(1/2)である。 (2)X, は、2項間の漸化式の考え方を利用して求める. (1) 硬貨を5回投げたとき,表と裏の出る回数, 回数の差の絶対値 X の値、お よび,それが起こる確率は次のようになる. (表裏)=(0.5) (50) とき,Xo=5であり, P(X=5)=2×(1/2)^(1/2)=270 (表裏) = (1,4) (41) のとき,X=3であり, 5 P(X=32×(1/2)^(1/2)-2727 (表裏) = (2,3) (32) のとき, X=1 であり, P(X=1)=2×(1/2)(1/2)=120 (12)(1/2) =5Co (表裏) = (4,1) (32) のときも同様 (1)(1 5 10 15 よって,平均は, E(X)=5x- +: 24 8 また,EX)=5°×1/21+3°×12021121221=5より、分散は、 V(X.)=E(X,³)—{E(X)}²=5— ( 15 )² = 95 (2) 4X,=X,1+3 は,X,-1=1(X,,-1) と変形 特性方程式 4α =α+3 より, α=1 できる. + よって、X-1=(1)(x-1)より.X.=(1/2)x-(2)+1 したがって、 平均は F(X)=(1/2)E(X-1)+1=(1)1/18-(1)+1 =2(1)+1=2+ +1 分散は, v(x) = {(+)"}*v(x) = {(+)}* 95 95 24n+6 練習 赤玉が3個,白玉が2個,青玉が1個入っている袋がある.この袋から3個の B2.6 玉を同時に取り出すとき、取り出された玉の色が何種類であるかを確率変数X で表す.Xから始まり,X,=3X,-1+2 (n=1,2,… によって定まる確率変 *** 数の列 Xo, X1,X2, を求めよ. Xn,・・・・・・について, X, の平均E (X) と分散V (X) 82-8 5 るとする

解決済み 回答数: 1
数学 高校生

この問題で矢印のところがわかりません。 教えてください🙇‍♀️

基本 例題 31 an+1=pan+(nの1次式) 型の漸化式 次の条件によって定められる数列{an}の一般項を求めよ。 a1=3, an+1=2an-n CHART & SOLUTION 漸化式 α+1=pan+(nの1次式)(カキ1) A 00000 ① 階差数列の利用 ② an+1-f(n+1)=p{an-f(n)} と変形 ②の変形については右ページのズーム UP を参照。 下の解答は1の方針による解法で,別解は2の方針による解法である。 解答 基本 29 30 辺々引いて an+2=2an+1-(n+1), an+1=2an-n an+2-an+1=2(an+1-an)-1 bn=an-an とおくと 6+1=26-1 ...... ① また b1=a2-α= (2・3-1)-3=2 ①から bn+1-1=2(6-1) 更に b1-1=1 ゆえに、数列{bm-1}は初項1, 公比2の等比数列となり bm-1=1・2月-1 すなわち 6n=2"-1+1 よって, n≧2 のとき n-1 an=a1+(2-1+1)=3+ k=1 =2"-1+n+1 2-1-1 2-1+(n-1) a = 3 であるから,この式は n=1のときにも成り立つ。 したがって α=21+n+1 別解 an+1=2ann を変形すると 与えられた漸化式で n+1とおく。 α=2α-1 を解くと a=1 inf. bn=2"-1+1 を求め した後は an+1=2ann lan+1-an=2"-1+1 から αn+1 を消去して an=2"-1+n+1 と求めてもよい。 ← n=1 とすると 2°+1+1=3 an+1-(n+2)=2{an-(n+1)} また a₁-(1+1)=3-2=1 この変形については右 ページのズーム UP を 参照。 ゆえに、数列{an- (n+1)} は,初項1 公比2の等比数列 となり an-(n+1)=1・2"-1 したがって α=2"+n+1

解決済み 回答数: 1
数学 高校生

漸化式の問題です。どうしてこの2つの漸化式が成り立つのかわからないです。そもそもanが何の数列を指しているのかもわかりません。この2つの漸化式が立てられたら後はわかるので大丈夫です。どうかわかりやすくお願いします。

478 ONESA 重要 例題 43 隣接3項間の漸化式 (3) X 00000 n段(n は自然数)ある階段を1歩で1段または2段上がるとき,この階段の がり方の総数を an とする。 このとき, 数列{an} の一般項を求めよ。 基本41 指針 数列{a} についての漸化式を作り,そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから,n≧3のときn段に達する 直前の動 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前[(n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。 このように考えて、まず隣接3項間の漸化式を導く。 →漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが,ここでは 特性方程式の解α,βが無理数を含む複雑な式となってしまう。計算をらくに扱う ためには,文字α βのままできるだけ進めて、 最後に値に直すとよい。 |n=2 a=1, a2=2である。 解答 n3のとき, n段の階段を上がる方法には,次の [1], [2] の 場合がある。 2段 an通り [1] 最後が1段上がりのとき、 場合の数は (n-1) 段目まで の上がり方の総数と等しく [2] 最後が2段上がりのとき、 場合の数は (n-2) 段目まで の上がり方の総数と等しく an通り [1] 最後に1段上がる n FX | (n-1) 段 よって 参考 フィボナ ある月 新たに まれた ろうか 月末の 1. となり 漸化式 a= この {az} かる ①で 題 4 [2] 最後に2段上がる ここまで an-1 通り an=an-1+an-2(n≧3) (-2) 段 (*) n段 (n-1) 段 ここまで an-2 通り an= 17 ない 和の法則 (数学A) ... この漸化式は,αn+2=an+1+an (n≧1) ・・・ ①と同値である。 x2=x+1の2つの解をα,β(a<β) とすると, 解と係数の 関係から ①から a+β=1, aß=-1 an+2-(a+β)an+1+αßan=0 よって an+2-aan+1=β(an+1-aan), a2-aa=2-α an+2-Ban+1= a(an+1-Ban), az-βa1=2-β ...... (*)でn→n+2 特性方程式 x2-x-1=0の解は x= 1±√5 2 a=1, a2=2 ...... (2 (3 ②から an+1-aan=(2-α)β7-1 ③から ...... (4) <arn-1 an+1-Ban=(2-β)α7-1 (5) ④ ⑤ から (Ba)an=(2-α)β-1-(2-β) an-1 ⑥ an+1を消去。 1-√5 1+√√5 a= B= 2 , 2 であるからβ-α=√5 また, α+β=1, a2=α+1, β2=β+1であるから 2-α=2-(1-β)=β+1=β2 同様にして よって, ⑥から 1+√5 \n+1 an= 2 次の条件によって定められる数列{a} の一般項を求めよ。 a1= a2=1, an+2=an+1+3an α, β を値に直す。 2-α, 2-βについて は,α, β の値を直接 代入してもよいが,こ こでは計算を工夫し ている。 [類 北海道大] 2-B=a² 1-√√5 練習 ④ 43 な

解決済み 回答数: 1
数学 高校生

1行目がなんでa1=1とa2=2になるのかがわからないので教えてください。 お願いします。

重要 例題 43 隣接 3 項間の漸化式 (3) n段 (nは自然数) ある階段を1歩で1段または2段上がるとき,この階段の上 がり方の総数を an とする。 このとき, 数列{a}の一般項を求めよ。 基本41 指針 数列{an} についての漸化式を作り,そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから, n≧3のとき段に達する直前の動 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前 [(n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。 このように考えて, まず隣接3項間の漸化式を導く。 ・漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが, ここでは 特性方程式の解α, βが無理数を含む複雑な式となってしまう。 計算をらくに扱う ためには,文字 α βのままできるだけ進めて, 最後に値に直すとよい。 a=1, a2=2である。 n=2 解答のとき, n段の階段を上がる方法には、次の [1], [2] の 場合がある。 [1] 最後が1段上がりのとき、 場合の数は (n-1) 段目まで の上がり方の総数と等しく 通り [2] 最後が2段上がりのとき, 場合の数は (n-2) 段目まで の上がり方の総数と等しく 通り 2段 [1] 最後に1段上がる [2] 最後に2段上がる n FX | (n-1) 段 ここまで an-1 通り (n-1) 段 (n-2) 段 n段 ここまで α-2 通り よって an=an-1+an-2(n≧3) ...... (*) 1和の法則 (数学A) この漸化式は,n+2=an+1+an (n≧1) ①と同値である。 x2=x+1の2つの解をα,β (α <β) とすると, 解と係数の 関係から ①から α+β=1, aβ=-1 an+2-(a+β)an+1+αBan=0 よって ②) an+2-aan+1=B(an+1-aan), a2-aa=2-α an+2-Ban+1=α(an+1-Ban), a2-βa=2-β (*)でn→n+2 特性方程式 x²-x-1=0の解は x= 1±√5 2 <a=1, a2=2 から ③から an+1-aan=(2-α)βn-1 an+1-Ban=(2-β)α7-1 ...... ④ ...... ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β) an-1 1-√5 a= 1+√√5 B= 2 ' 2 であるから Mar-1 (6) an+1 を消去。 β-a=√5 また,α+β=1, a2=α+1, β2=β+1であるから 2-α=2-(1-β)=β+1=β2 同様にして 2-β=Q2 よって、⑥から 1+√5 \n+1 an= 練習 次の条件によって定められる数列{ ・船頂を求め α, βを値に直す。 2-α, 2-β について は,α, β の値を直接 代入してもよいが、 こ こでは計算を工夫し ている。

解決済み 回答数: 1