数学
高校生
解決済み

1行目がなんでa1=1とa2=2になるのかがわからないので教えてください。
お願いします。

重要 例題 43 隣接 3 項間の漸化式 (3) n段 (nは自然数) ある階段を1歩で1段または2段上がるとき,この階段の上 がり方の総数を an とする。 このとき, 数列{a}の一般項を求めよ。 基本41 指針 数列{an} についての漸化式を作り,そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから, n≧3のとき段に達する直前の動 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前 [(n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。 このように考えて, まず隣接3項間の漸化式を導く。 ・漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが, ここでは 特性方程式の解α, βが無理数を含む複雑な式となってしまう。 計算をらくに扱う ためには,文字 α βのままできるだけ進めて, 最後に値に直すとよい。 a=1, a2=2である。 n=2 解答のとき, n段の階段を上がる方法には、次の [1], [2] の 場合がある。 [1] 最後が1段上がりのとき、 場合の数は (n-1) 段目まで の上がり方の総数と等しく 通り [2] 最後が2段上がりのとき, 場合の数は (n-2) 段目まで の上がり方の総数と等しく 通り 2段 [1] 最後に1段上がる [2] 最後に2段上がる n FX | (n-1) 段 ここまで an-1 通り (n-1) 段 (n-2) 段 n段 ここまで α-2 通り よって an=an-1+an-2(n≧3) ...... (*) 1和の法則 (数学A) この漸化式は,n+2=an+1+an (n≧1) ①と同値である。 x2=x+1の2つの解をα,β (α <β) とすると, 解と係数の 関係から ①から α+β=1, aβ=-1 an+2-(a+β)an+1+αBan=0 よって ②) an+2-aan+1=B(an+1-aan), a2-aa=2-α an+2-Ban+1=α(an+1-Ban), a2-βa=2-β (*)でn→n+2 特性方程式 x²-x-1=0の解は x= 1±√5 2 <a=1, a2=2 から ③から an+1-aan=(2-α)βn-1 an+1-Ban=(2-β)α7-1 ...... ④ ...... ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β) an-1 1-√5 a= 1+√√5 B= 2 ' 2 であるから Mar-1 (6) an+1 を消去。 β-a=√5 また,α+β=1, a2=α+1, β2=β+1であるから 2-α=2-(1-β)=β+1=β2 同様にして 2-β=Q2 よって、⑥から 1+√5 \n+1 an= 練習 次の条件によって定められる数列{ ・船頂を求め α, βを値に直す。 2-α, 2-β について は,α, β の値を直接 代入してもよいが、 こ こでは計算を工夫し ている。

回答

疑問は解決しましたか?