学年

教科

質問の種類

数学 高校生

写真の中にある紫ペンで囲った式の変形の覚え方を教えて欲しいです。語呂合わせでもダジャレでもなんでも結構です。全く覚えられなくて…。誰かお願いします!単元は数学的帰納法です。

考え方 自然数nに関する証明については, 考えてみよう. (証明)(1) n=1のとき,P,=t+1=xより成り立つ。 ーソドッ =kのとき、P=+1/2=xのを次の多項式)と仮定すると th +1 のとき, Ph+1=tk+1+ th+- th =xP-P- tk+1 Phだけではなく,P-1 の次数についても仮定が必要になる.また,(II) m ・・であるから, k-1≧1 より k≧2 でなければならない + ここで, Pa= (xk次の多項式) と仮定しているから,xPkはxの(k+1) 次 ある.しかし,P-1 については,何次式なのか、xの多項式なのかもわからない とすると, n=1, 2, 解答 (I) n=1のとき,Pi=t+==xより成り立つ. 1 t \2 1 n=2のとき,P2=tt1/12=t+ t (II)n=k-1,k(k≧2) について、題意が成り立つと仮定する. 2=x-2より題意は成り立 JPk-1 は xの (k-1) 次の多項式 すなわち, [Phはxの次の多項式 k tk+ Pk+1=t+1+ +1 1+1 = (1 + 1/1) (0 + 1 ) = ( 1^-1 + tk+1 =xP-P-1 で表されると仮定す tk th tk- 1 ここで,xPk は x(xのk次の多項式)より, 数列 + (I) (II)より すべての自然数nについて題意は成り 立つ. *)は成り立 よって、n=k+1のときも題意は成り立つ 次の多項式であるから, Pk+1 は xの (k+1) 次の 多項式となる. xの (k+1) 次の多項式となり、Pはxの(k-1) Pa (k- はxの 式より, Pk1 =(x (k+1) -xの(k- 注》 (I)でPがxの1次の多項式であることだけを示し, (II)の一般的な方法 2次の多項式であることを示そうとすると, Po, P, が必要となり困る。 れていない) よって,(I)でP2 も調べておく必要がある. なお,下の練習 B1.63は, フィボナッチ 千

解決済み 回答数: 1
数学 高校生

数1の一次不等式の問題⑴です。a-1じゃなくてaで考えてないのはなぜですか?aで考えてもいけますか?

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1)>x+αを解け。 ただし, αは定数とする。 0000 (2) 不等式 ax<4-2x<2xの解が1<x<4であるとき, 定数αの値を求めよ。 [(2) 類 駒澤大] 基本 34 重要 指針 文字を含む1次不等式(Ax> B, Ax<B など)を解くときは,次のことに注意。 ・A=0のときは,両辺を4で割ることができない。 一般に、「0」で割る」 •A0 のときは、両辺を4で割ると不等号の向きが変わる。いうことは考えない (1) (a-1)x>a(a-1) と変形し, a-1>0, a-1=0, a-1<0の各場合に分けて ax<4-2x ...... A (2) ax<4-2x<2x は連立不等式 と同じ意味。 4-2x<2x B まず,Bを解く。 その解とAの解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ (1) 与式から (a-1)x>a(a-1 ...... ①まず, Ax>Bの形に [1] α-1>0 すなわちα>1のとき x>a 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 [3] α-1 <0 すなわち α <1のとき 「α>1のとき x>a, よって (2) 4-2r a=1のとき 解はない, a<1のとき x <a ①は 0.x>0 sl>S ① x<a>x ①の両辺をα-1 (>0 で割る。 不等号の向 変わらない。 <0> 0 は成り立たない 負の数で割ると、不 の向きが変わる。 検討チ

未解決 回答数: 1