学年

教科

質問の種類

数学 高校生

絶対値を含む不等式です。 (2)の問題(右下の数直線)で1と3の部分で●と○が被っていて、最終的に「-4/3≦x≦6」と●の方を採用しているのはなぜですか?学校では○を優先すると習いました。

74 基本 例題 42 絶対値を含む不等1 次の不等式を解け。け。 (1)|x-4|<3x 2-12-31-2 (2) |x-1|+2|x-3|≤11 た 絶対値を含む不等式は, 絶対値を含む方程式 [例題41] と同様に場合に分けるが原 則である。 (1)x-40,x-40 の場合に分けて解く。 絶ず方不 (2)2つの絶対値記号内の式が0となるxの値はx=1,3 よって, x<1, 1≦x<3,3≦xの3つの場合に分けて解 く。 (2) x-3<0 x-3M0 x-10-10 なお, 絶対値を含む方程式では、場合分けにより, || をはずしてできる方程式の解が場合分けの条件を満たす 1 3 X かどうかをチェックしたが, 絶対値を含む不等式では場合分けの条件との共通範囲 をとる。 CHART 絶対値 場合に分ける (1) [1] x4 のとき, 不等式は これを解いて x>-2 x≧4との共通範囲は x≥4 [2] x<4のとき,不等式は これを解いて x>1 x-4 <3x |[1] ① 14 [2] ② -(x-4)<3x x<4との共通範囲は 1 <x < 4 求める解は,①と②を合わせた範囲でいた感 x>1 (2) [1] x<1のとき,不等式は よって -(x-1)-2(x-3)≦11 [1] 4 x- 3 x<1との共通範囲は1/3x<1 [2] 1≦x<3のとき,不等式は [2] 4 1 解答 A x-1-2(x-3) ≦11 よって x≥-6 1 13 1≦x<3との共通範囲は |[3] 1≦x<3 よって x≤6 [3] 3≦xのとき,不等式は 3≦xとの共通範囲は 3≤x≤6 ② x-1+2(x-3)≦11 3 6 ③ 求める解は,①~③を合わせた範囲で 4 - ≤x≤6 3

未解決 回答数: 1
数学 高校生

10(3)と11(2)が分かりません。 それぞれ答えは100通り、2022通りになります。 特に(2)はどんな方法でやるのが1番早いでしょうか? よろしくお願いします

10 [2022 慶応義塾大] ある学校では,ドミソシの4つの音を4つ組み合わせて チャイムを作り, 授業の開始・終了などを知らせるため に鳴らしている。 チャイムは,図1のように4×4 の格 子状に並んだ16個のボタンを押すことによって作るこ とができる。 縦方向は音の種類を表し、横方向は時間を 表している。 例えば,ドミソシという音を1つずつ、順 番に鳴らすチャイムを作るには、 図2のようにボタンを 押せばよい(押したボタンを◎で表している)。 ただし、鳴らすことのできる音の数は縦1列あたり1つ だけであり,音を鳴らさない無音は許されず,それぞれ の列で必ず1つの音を選ばなければならないとする。 このとき 図1 音の種類 ・時間 音の種類 時間 図2 (1) 4つの音を1回ずつ鳴らすことを考えた場合,チャイ ムの種類は | 通りになる。 (2) (1)に加えて,同じ音を連続して2回繰り返すことを1度だけしても構わない (例: ドミミソ) とした場合、チャイムの種類は合わせて 通りになる。 ただし, 連続 する音以外は高々1回までしか鳴らすことはできず,それらは連続する音とは異なら なければならないものとする。 (3)(1)と(2)に加えて,同じ音を連続して4回繰り返すチャイムを許すと, 可能なチャ 通りになる。 イムの種類は合わせて 11 [2022 岩手大] ある公園には右の図の線で示されるような歩道が造られて いる。また,この公園内には図のP,Q,R の3地点にだ け水飲み場が設置されている。 IP (1) A地点から歩道を通ってB地点に至る最短の経路のう ち P地点の水飲み場を通るものは何通りあるか。 (2) A地点から歩道を通ってB地点に至る最短の経路のう ち, 水飲み場を1回以上通るものは何通りあるか。 A 20 IR B

回答募集中 回答数: 0