学年

教科

質問の種類

数学 高校生

2枚目の付箋を貼った行がわかりません

次関数 (1)の解 S+AS+ 7 曲線 y=x2 (-2≦x≦1) 上の相異なる3点をA(a, a²), B (6,62), C(c, c2) とする。このとき, 次の問いに答えよ.ただし,<bc であるものとする. (1) △ABCの面積Sをa,b,c を用いて表せ. (東北大) (2)a,b,c を上述した条件の下で動かすとき, Sの最大値を求めよ. CARA <(1) の考え方> 点Bを通りy軸に平行な直線と直線ACとの交点をDとし, △ABC を △ABD と ABCD に分割して考える. 3点A, B, C は相異なる点で, その左右の位置関係も判 明している. 直線 AC の方程式は, y=(c+a)x-ac .....1 ここで,点Bを通りy軸に平行な直線と直線AC との 交点をDとすると, Dのx座標は6となる. また, ① に x=6 を代入すると, y=(c+a)b-ac =ab+bc-ac より, D のy座標は ab+bc-ac である. したがって線分BD の長さは、 BD=(ab+bc-ac) =(b-c)a-(b-c)b -2 (70365 =(a−b)(b-c) ◎おうとなる。 よって, △ABCの面積Sは, S=△ABD+△BCD BD B LD -)-(1+08) I-0- SA 4X4 YA =1/12(a-b)(b-c){(b-a)+(c-b)} =1/12(a-b)(b-c)(c-a) 0 1 6x=b² <=@ BD ADAN (Bのx座標 =/(a−b)(b-c)(b-a)+(a−b)(b-c)(c-b x 2点A(a, a2), C(c, c2) を通る直線 _c²-a²ª_(x−-a)+d² y= Ac y=(c + a)x-ac c-a _(c+a)(c/a) c-a (x-a)+ a² =(c+a)(x-a)+a² =(c+a)x-ac =(c+a)x-ac (Cのx座標)一 (c+a) (-a) žá²+² (Bの座標 必ず面積分割すること (②2)の <--2 関係 (2)の解 a. (i (ii であ a= NAJC よ + One (1)のよ 学ぶべ AB= すこS -2≤

回答募集中 回答数: 0
数学 高校生

[1]なぜ2π−αなのか図的に理解できないので教えてください 範囲を満たすためにやっているのはわかってるんですが,なぜこう表すのか理解できないです

う 重要 例題 21 複素数の極形式(2) 次の複素数を極形式で表せ。 ただし、偏角0は0=0<2πとする。 (1) cosaisina (0<a<2π) (2) sina+icosa (osa<) * 23と好 CHART @ SOLUTION 極形式r(cos+isin (1) 虚部の符号 - を+に→ sin(-9)=-sine を利用 実部も虚部に偏角を合わせる - cos (-8)=cose を利用 (2) 実部は sin を cos に 虚部は cos を sin に → COS A. Cos (e)sino, sin (6) = cose を利用 2 別解 与えられた複素数と Z = COsa + isina との図形的な位置関係から偏角 を求める。 解答 (1) cosa=cos(-a), -sina=sin(-α) であるから cosa-isina=cos(-a)+isin(-α) の形 三角関数の公式を利用 sinaticosa=cos だのか? =cos(2-a)+isin(2™-α) ① 0<a<2πより,0<2π-α<2πであるから,①は求める極形式である。 π (2) sing=cos (o), cosa=sin (フレーム)であるから 2 。 -icos a=cos (2-a)+isin (2-a) π π 0≦aより、0<a≦であるから, ② は求める極形式である。 ~² (2x - V 00000 (2) ²2=20 に関して対称であるから,の偏角は 2π-α よって z=cos (2π-a)+isin (2z-α) (2) z=sinaticosa とおくと z= (cosa-isina)=izo したがって,zはZを原点を中心と π ■αは偏角 0の条件 0≦<2πを満たさない。 基本10 YA 2π-α Zo

回答募集中 回答数: 0
数学 高校生

92の(3)のしていることがよくわからないです。 誰か詳しく教えてほしいです。

のグラフは,y=3x²のグラフをx軸方向 | だけ平行移動し,x軸に関して対称に折り返し,さらにy軸方向に だけ平行移動したものである。 (慶應 91 放物線y=ax2+bx+5 を原点に関して対称移動し,さらにy軸方向に c け平行移動したところ,この放物線は点 (2 3 でx軸に接し, 点 2' を通るという。このときのa, bおよびcの値を求めよ。 1 2' (北海道工 02 放物線y=ax2 をAとする。 (1) A をx軸方向に -3だけ平行移動し,y 軸に関して対称移動し,さら 軸方向に3だけ平行移動した放物線をBとする。 B の方程式を求め, A Bの位置関係を調べよ。 (2) Ay軸方向に ―2だけ平行移動し,x軸に関して対称移動し,さら 軸方向に2だけ平行移動した放物線をCとする。 Cの方程式を求め, Cの位置関係を調べよ。 (3) A を点 (32) に関して対称移動した放物線の方程式を求めよ。 3 放物線y=x2-4x-5と直線x=1 に関して対称な放物線の方程式を求 また,直線y=2に関して対称な放物線の方程式を求めよ。 ■ 次の問いに答えよ。 1) 2次関数y=ax2+bx+cのグラフをx軸に関して対称移動し、さら をx軸方向に -1,y 軸方向に3だけ平行移動したところ y=2x2の が得られた。このとき,a= b=1,c=である。 2) 2次関数y=px²+gx+rのグラフの頂点は (3,-8) であるとする とき,g=p,r= さらに,y<0 となるx である。 範囲がk<x<k+4 であるとすれば,k=,p=である。 (センター nt 93 対称移動により頂点が移る点を求めて, 放物線の方程式を求める。 94y0 となるxの範囲がk<x<k+4であるから、グラフは下に凸でグラフと 有点はx=k, k+4である。

回答募集中 回答数: 0
数学 高校生

93の(2)教えてほしいです。 なぜ最後-をつけるのでしょうか? 緑の線で囲ったとこです。

91 放物線y=ax²+bx+5 を原点に関して対称移動し,さらにy軸方向にcだ け平行移動したところ。この放物線は点 ( 22.0)でx軸に接し、点 ( 12.4 を通るという。 このときのα bおよびcの値を求めよ。 (北海道工大) 92 放物線y=ax²をAとする。 01Aをx軸方向に-3だけ平行移動し,y軸に関して対称移動し、さらにx 軸方向に3だけ平行移動した放物線をBとする。 B の方程式を求め, A と Bの位置関係を調べよ。 (2) Ay軸方向に2だけ平行移動し,x軸に関して対称移動し,さらにy 軸方向に2だけ平行移動した放物線をCとする。 C の方程式を求め,Aと Cの位置関係を調べよ。 (3) を点 (32) に関して対称移動した放物線の方程式を求めよ。 * 93 放物線y=x2-4x-5と直線x=1に関して対称な放物線の方程式を求めよ また、直線y=2 に関して対称な放物線の方程式を求めよ。 (名城大) 94 次の問いに答えよ。 (1) 2次関数y=ax2+bx+cのグラフをx軸に関して対称移動し、さらにそれ をx軸方向に -1,y 軸方向に3だけ平行移動したところ y=2x2のグラフ が得られた。このとき,a=b=1,c=である。 (2) 2次関数y=px2+gx+rのグラフの頂点は(3, -8) であるとする。 こ とき,g=p,r=カーである。さらに, y <0 となるxの値 範囲がk<x<k+4 であるとすれば,k=-= である。 (センター試験・ int 93 対称移動により頂点が移る点を求めて, 放物線の方程式を求める。 94 y <0 となるxの範囲がk<x<k+4 であるから, グラフは下に凸でグラフとx軸と 有点はx=k, k+4である。

回答募集中 回答数: 0
数学 高校生

円と放物線の接線に関する質問です。 解説では上の図の1,2,3は重解条件として捉えられないらしいです。3については納得できたのですが、1,2はなぜ捉えられないのか教えて欲しいです。

値の範囲を求めよ. 円と放物線の位置関係 放物線 (2次関数のグラフ) の軸上に 中心がある円がその放物線と接するとき, 位置関係について,右図 の4タイプが考えられる. 1°~3° は放物線の頂点が円周上にあるタ イプである. a 3° 接点は頂点 入試では, 1°と4°の内接タイプがよく出題される. 円と放物線 の式を連立させてæを消去すると, 1°~4° のすべてについての2 次方程式となる. 4°のタイプはの重解条件でとらえることがで きる. しかし, 1°~3°は,yの重解条件でとらえることができないことに注意しよう. 放物線y=x 2① 円 + (y-a)^=2...... ② が異なる2点で 4°を重解条件でとらえる 接するための条件は, ①, ② からæを消去して得られるyの2次方程式が0に重解をもつことであ る. 4°はこのように重解条件でとらえることができる. 上の人を説明しよう. 例えば②がx2+(y-1)2=1の場合, ①と②は原点で接するが, ①と②からエ を消去して得られる」の2次方程式y2-y=0は重解をもたない. したがって、 安易に '接する ⇒ 重解条件としてはいけない. 「詳しくは,「教科書 Next 図形と方程式の集中講義」 §17]

回答募集中 回答数: 0
数学 高校生

(1)から(3)の解き方と答え教えてくださいт т

小 B 係数や定義域に文字を含む場合の最大 最小 目標 関数の最大値、最小値を求めるとき, 場合分けが必要になることがあ る。そのようなときでも最大値、最小値が求められるようになろう。 (p.109 21 xの関数において, 関数の式の係数や定数項に文字を含む場合につい て考えよう。 そのような関数については, x以外の文字は数と同じように扱う。 応用 例題 2 考え方 解答 練習 19 第2節 2次関数の値の変化 | 107 | 関数 y=x2-4x+c (1≦x≦5) の最大値が8であるように, 定 数cの値を定めよ。 y=x²-4x+c を変形すると小値 y=(x-2)2 +c-4 以外の文字cは数と同じように扱い、 まずグラフをかいて最大値を 10 求める。 頂点の座標にcが含まれるためグラフの位置は定まらないが,放物線 の軸と定義域の位置関係だけは定まる。 その位置関係に注意する。 M√ S=x 1≦x≦5 であるから, yはx=5で 最大値をとる。 x=5のとき y=52-4・5+c=c+5 c+5=8 より c=3 軸x=2 5 !c+5 x=1 x=5 【?】 最大値をとるのが, x=1のときではなくx=5のときである理由を 説明してみよう。 次の条件を満たすように、 定数cの値を定めよ。 (1) 関数 y=x²-2x+c (-2≦x≦2) の最大値が5である。 (2) 関数y=x2+4x+c (-1≦x≦0)の最小値が−1である。 (3) 関数 y=-x2+6x+c (1≦x≦4) の最大値が-3である。 第3章 2次関数 15 20 25

回答募集中 回答数: 0