学年

教科

質問の種類

数学 高校生

(2)どうやって解いてるんですか?読んでもよく分かりません😭 [3]でtが0の時は分かるんですが1の時は右の図を見ると解は1個じゃないんですか? あとこのaの場合分けはどういう分け方をしてるんですか?🙇‍♂️

重要 例題 126 三角方程式の解の個数 (1) は定数とする。 0≦02 のとき, 方程式 sinsin=α について この方程式が解をもつためのαのとりうる値の範囲を求めよ。 この方程式の解の個数をαの値によって場合分けして求めよ。 (2) 00000 基本125 00 最大 本 124 CHART & SOLUTION 方程式f(0)αの解 2つのグラフ y=f(0),y=aの共有点 sino=k(0≦0 <2π) の解の個数 k=±1で場合分け の個数は k=±1 のとき1個: -1<k<1のとき2個; k<-1, 1<h のとき0個 解答 4章 2 (1) sin-sin0=a ① とする。 sin0=t とおくと t²-t=a 16 ただし,0≦0<2πから -1≤t≤1 y y=f-t したがって, 方程式 ①が解をもつための条件は, [1]- 方程式 ② が ③の範囲の解をもつことである。 2 y=a ● 方程式②の実数解は,y=ピー=(1/12/21/17 [2] 4 三角関数のクラ グラフと直線 y=αの共有点の座標であるから, 右の図より [3] 021 [4]→ 1 [5] 4 0 (2) (1) の2つの関数のグラフの共有点のt座標に注目すると、 方程式の解の個数は,次のように場合分けされる。 [1] α=2 のとき, t = -1 から 1個 9801 [2] 0<α <2 のとき, -1<t<0 から 2個 + [3] [4] [3] a=0 のとき, t=0, 1 から 3個 [5] [4] の範囲に共有点がそれぞれ1個ずつあり,そ [1] これぞれ2個ずつの解をもつから M 14-1 <a<0 のとき,O<1</12/1/21<1121- [4] 2π + [3] 0 π 0 [2] 2 -1 t=sin0 4個 [5]a=-1/2 のとき,t=1/12 から 2個 [6] α<1,2<a のとき 20個

未解決 回答数: 1
数学 高校生

(ア)で合成をしないのは、 √5が出てきてもありがたいことがないからですか? √5になる角度なんて求めるのしんどいからですか?

●11 三角方程式・不等式 (ア) 2cos-sin0=1であるとき, cose, sin 0 の組を求めよ. (兵庫医療大・リハビリ, 改題) (イ) のとき, sin≧cos0 をみたすの範囲は [ である. 0 √√6 (ウ) 0°6<180° のとき, 2cos2 +sin 0- -1≧0 を解け. 2 2 (エ) sin0+ sin20+ sin30>0を0≦0<2の範囲で解け. (芝浦工大) (福岡大,商) (信州大・繊維) cos'0+sin20=1の利用 この基本関係式を用いて, cose と sin0の入った式を cose か sin0のど ちらか一方だけの式にそろえるのが基本の手法である. 単位円を利用 三角関数の方程式・不等式を解く際 にも単位円を活用しよう. 図 1 YA 図 2 12 点P (cose, sin0) は図1のような点を表す. よって 例えば「0≦02 のとき, sin≧1/2を解け」なら, P は図2の太線部にある (sin0はPのy座標だから, y1/2の範囲にある)ことから,T/6≦05/6 となる. また,次の前文 (1番目と2番目) も参照. 0 O 48 +56 12 y=1/ QA 6 HY 角をそろえる (ウ) のように 0/2 と 0 が混在するときは, 0にそろえよう。 合成の活用 例えば sin+cose は変数が2か所にあるが,合成すると1か所になる効果がある。 積の形に直す 多項式の方程式・不等式を解く際の基本は因数分解である. 三角方程式・不等式を 解くときも同様に,積>0 などの形にしよう. (エ)では,2倍角 3倍角の公式を利用すればよい。

解決済み 回答数: 2
数学 高校生

定石なんだと思いますが、初見で π/2-Aではなくて、π/2+Aにしたんですけれど 答えが合いませんでした。 私の考え方がダメなのか、計算が間違っているのか教えてください🙇‍♀️

12 三角方程式・不等式 (ア) cos = sin(7/8) を解け. (類藤田保健衛生大医療) (イ) 連立方程式 [sinx+cosy=√3 cosx+siny=-1 (0≦x<2,0≦y<2) を解け. (関西大 ⇔A=B+ (2) xnor A=-B+(2) xn cosA =cos B or sin Asin B の形にする→培する図14 上式の形の方程式は, 右図を描き (思い浮かべて), 図1により, cosA=cosB 図2 YA -sinB cosB Bi O 1 0 B 1 図2により, sinA=sinB -B π-B ⇔ A=B+ (2) Xnor A=π-B+(2) xn とする.なお, sin A を cos の形に, cos A を sin の形に直すには, y 図 3 ax+by=c sinA=cos = cos(-A). cos A = sin 2 sin (A)を使う。 (P) P sine 50 cose 1 x acos0+bsin0=c X = cos 0, Y = sin0 とおくと, X2+2=1 aX + by = c を満たす. よって, 点P をP (cos 0, sin0) とおくと,Pは 円x2+y2=1と直線ax+by=cの共有点である (図3). このように視 覚化して, cos 0, sin0 を求める手法 (単位円を利用) も押さえておこう. 連立方程式は '一文字消去' が原則 して, æだけの式にしよう {: Stand+cased = 11-4 ②それ自体を2秒△ (イ)では,まず cosy, siny を cos'y+sin'y=1 を用いて消去 (3) @ Sindade ②舗 ③壊する YA と切ない 解答量 5363 7 (ア) cossin π T=COS 8 3 3 0=+2nm または 0=- 「すみれ 8 2 8 π=COS 8 π 8 +2n n は整数) = cos(-7)= cos(-3)-cos 31). により, 38 12 1 x

解決済み 回答数: 1
数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0
数学 高校生

次の問題が最初からよく分からないのですがどなたか解説お願いします🙇‍♂️

63 三角方程式 たとえば,右図の位置に動径があるとき, 角度の 呼び方は, 与えられた範囲によって変わります。 * L, 0≤0<2π £51£1π†l, −π≤0<π YA O 1 T ならば一人になります.この問題では O≦x<≦BSとするとき π 2 COS --q = sina を用いて, sina=cos2β ...... ① をみたすβ をαで表せ. 精講 この問題は数学Ⅰの範囲で解けますが, 弧度法の利用になれること も含めて,ここで勉強します. この方程式は三角方程式の中では一番難しいタイプで,種類 (sin, cos) も角度 (α, β) も異なります. このタイプは,まず種類を統一す ることです.そのための道具が cos(フレーム)- --α = sina で, これで cos に統一で きます. そのあとは2つの考え方があります. 0≦2B≦2z,0<-usとなっているので,2B=-α と 2π- -(-a)になります。昔をと考えてみたらわかるはずです。 a) (別解) cos28=cos (テーマ)より,cos28-cos (フレーム)=0 和積の公式より, -2sin(B+4) sin(B-4+/1/1) = 0 ∴. 57 参照 sin(B+4) =0 または,sin (B-4+2/2) = 0 π a 0<¼¯q≤4, 0≤ß≤π kŋ 2 a <B+= AB-A+ 4 2 解 答 π COS α = sina より ① は, 2 (-) 5π π a .. B+4=x.B-4+量/2=0 YA - よって、B-1 +1 π a cos(-a) ・+ 3 4 2'4 2 注 どちらの解答がよいかという勉強ではなく, どちらともできるよ うにしておきましょう。 特に, 数学Ⅲが必要な人は,和積の公式を頻 繁に使うことになるので,その意味でも (別解)は必要です . ここで, cos 2ẞ=cos 0≤2ẞ≤2, 0<- だから右の単位円より, 3π 2ẞ=7-α, +α 2 B=-0.31% π a 3π a . 4 4 2 注 参照 EN +α 3π +α を -(-) と表現してはいけません.それは 0≦2B だ 3π +2π= +α がこの範囲においては正しい表 2 からです.-(-a)+2 現です. ポイント 種類も角度も異なる三角方程式は 演習問題 63 まず, 種類を統一する αで表せ. S,SBSとするとき, sina=cos2β をみたす B を

解決済み 回答数: 1