数学
高校生
解決済み

次の問題が最初からよく分からないのですがどなたか解説お願いします🙇‍♂️

63 三角方程式 たとえば,右図の位置に動径があるとき, 角度の 呼び方は, 与えられた範囲によって変わります。 * L, 0≤0<2π £51£1π†l, −π≤0<π YA O 1 T ならば一人になります.この問題では O≦x<≦BSとするとき π 2 COS --q = sina を用いて, sina=cos2β ...... ① をみたすβ をαで表せ. 精講 この問題は数学Ⅰの範囲で解けますが, 弧度法の利用になれること も含めて,ここで勉強します. この方程式は三角方程式の中では一番難しいタイプで,種類 (sin, cos) も角度 (α, β) も異なります. このタイプは,まず種類を統一す ることです.そのための道具が cos(フレーム)- --α = sina で, これで cos に統一で きます. そのあとは2つの考え方があります. 0≦2B≦2z,0<-usとなっているので,2B=-α と 2π- -(-a)になります。昔をと考えてみたらわかるはずです。 a) (別解) cos28=cos (テーマ)より,cos28-cos (フレーム)=0 和積の公式より, -2sin(B+4) sin(B-4+/1/1) = 0 ∴. 57 参照 sin(B+4) =0 または,sin (B-4+2/2) = 0 π a 0<¼¯q≤4, 0≤ß≤π kŋ 2 a <B+= AB-A+ 4 2 解 答 π COS α = sina より ① は, 2 (-) 5π π a .. B+4=x.B-4+量/2=0 YA - よって、B-1 +1 π a cos(-a) ・+ 3 4 2'4 2 注 どちらの解答がよいかという勉強ではなく, どちらともできるよ うにしておきましょう。 特に, 数学Ⅲが必要な人は,和積の公式を頻 繁に使うことになるので,その意味でも (別解)は必要です . ここで, cos 2ẞ=cos 0≤2ẞ≤2, 0<- だから右の単位円より, 3π 2ẞ=7-α, +α 2 B=-0.31% π a 3π a . 4 4 2 注 参照 EN +α 3π +α を -(-) と表現してはいけません.それは 0≦2B だ 3π +2π= +α がこの範囲においては正しい表 2 からです.-(-a)+2 現です. ポイント 種類も角度も異なる三角方程式は 演習問題 63 まず, 種類を統一する αで表せ. S,SBSとするとき, sina=cos2β をみたす B を

回答

✨ ベストアンサー ✨

cosA=cosBの形にして
AとBを比較して解こうという問題です
ただ、単純に比較してA=Bとして終わりでは不足です
たとえばA=60°,B=300°でも
cosA=cosBは成立するからです

cosは単位円周上の点のx座標なので、
単位円を使って、x座標が等しくなる2点の位置関係は
どんなものがあるか、検討しています

特にπ/2 -αの方が範囲が狭いので、
こちらを先にとり、これとx座標が等しい2βの位置は?
と考えます

星光

有り難うございます

この回答にコメントする
疑問は解決しましたか?