学年

教科

質問の種類

数学 高校生

この式がなんでこうなるか分かりません!! 教えてください🙇‍♀️

109 導関数の定義 びばん (1)(x)のx=1における微分係数が存在するとき,lim (1), f'(1) で表せ. f(x)-x³f(1) (2)f(x)=x2 のとき,定義に基づいて導関数 f(x) を求めよ. x-1 を ( 明治大 / 佐賀大) (解答 f(x)-xf(1) (1) lim- x→1 x-1 = =lim f(x)-f(1)xf(1)+f(1) | f(x)=(1) x³-1. f(1) = lim →1 x-1 =lim- x→1 f(1) f (1) は打ち消される |f(x) = f(1) = (x-1)(x²+x+1). (1) x-1 f(x)-f(1) -lim(x2+x+1).f(1) x-1 x→1 =f'(1)-(1+1+1)f(1) =f'(1)-3f(1) このときを x+h とすると, f(x+h)=(x+h)2 である (2) f(x)=x2 のとき, 000023 f(x+h)-f(x) (x+h)2-x2 2xh+h2 f'(x)=lim =lim -=lim -=lim(2x+h)=2x ん→0 h h→0 h h→0 h h→0 解説講義) f(b)-f(a) xがαから6まで変化するときの平均変化率は であり、 微分係数 f(a)はこの b-a f'(1)=lim 式でb を αに近づけたときの極限で,f'(a)=lim- f(b)-f(1) f(b)-f(a) b-a b-a ・・・① である. ここでα=1にすると, b 1 b-1 であり, b をxに書きかえるとf' (1)=lim- *→1 x-1 f(x)-f(1) となる.(1)では これを用いた.なお, 微分係数の定義である① は, b=a+hと置きかえて f(a)= lim- f(a+h)-f(a)...② と書かれることも多い h→0 h ②でαをxに書きかえると導関数 f(x) の定義になる.つまり, f'(x)=limf(x+h)-f(x) である. h→0 h (2)では「定義に基づいて f'(x) を求めよ」と要求されているから、この定義を用いて計算 していないものは0点である.ただし, 微分する (導関数を求める)ときに、毎回このような 計算をしていたら大変である.そこで, n=1, 2, 3, に対して, f(x)=x" のとき,f(x)=x1 ということを「公式」として,単に微分するだけのときは,「f(x)=x2 のとき,f(x)=2x」と アッサリやればよい. 文系 数学の必勝ポイント・ 導関数f'(x)の定義 関数 f(x) に対して,導関数f(x) == lim f(x+h)-f(x) である h

未解決 回答数: 1
数学 高校生

コとサがそれぞれ4番、8番になるのですがなぜですか?

ある工場で作られた牛乳の容量は 1000 mL と表示されている。この牛乳 4本を無作為に抽出し牛乳の容量を計 測したところ。 平均は1001.6mL, 標準偏差は 10.0mL であった。 この調査結果から牛乳の容量は表示通りではない と判断できるか、有意水準 5% で両側検定を以下のように行った。空欄に当てはまる最も適切なものを答えよ。 1234 100.6-1000 ただし、ア と ウに同じ語句を書いた場合はどちらも不正解とする。 また、空欄 は下の選択肢から選 3あ び、番号で答えよ。 正規分布工(値) z= オ (値)※値を求める途中の式でも可 力(X を含む式) とおくと,Zは標準正規分布 N(0, 1) に従うと見なせる。 両側検定を行うから,キ(Xを含む方程式または不等式) P(12123.2)=2(as-u(3,2)=0.00138 この工場で作られた牛乳の容量の平均をm(mL)とし、 (mの式) ウ(漢字二字) ア(漢字二字) 仮説を 400は十分大きいので、イのもとでの標本の大きさ 400 の標本平均は、 仮説を≠1000 とする. 文-1000 に近似的に従うから、10 de 2-10 2x-2000 となる確率p を求めると、 P => ク(値) となり,p (記号) 0.05 が成り立つので,ア 仮説は A 1 2003,2-2000 =32 よって、この標本調査の結果から, 牛乳の容量は B 次に、この問題を以下のように棄却域を考えることによって検定することもできる。 両側検定における有意水準 5% の棄却域は, P コ 0.95 であることを利用して, サ と表せる. 3.2 X=1001.6 のとき,Z= シ(値) となり、この値は棄却域に ス から,ア 仮説はA よって、この標本調査の結果から牛乳の容量はB コ サ の選択肢(同じものを繰り返し選んだ場合は両方とも不正解とする) 1 Z ≤ 1.64 2 Z ≤1.96 3|Z 1.64 4 Z ≤ 1.96 5 Z ≧ 1.64 6 Z≥1.96 7 || 1.64 8 |Z≥ 1.96

回答募集中 回答数: 0