学年

教科

質問の種類

数学 高校生

高次方程式についての質問です。紫のアンダーラインを引いたω*2+ω+1=0には何故のこの式が成り立つのかの証明がなかったのに、ω*3=1は何故式の成り立ちが証明されているのでしょうか。二枚目は一問前の問題で、これには、性質についてまず証明しろと書いてあります。何故ω*2+ω... 続きを読む

1の3乗根の虚数のうちの 「解答 これから使う性質に ついてまず証明して おく. ***** ■よ.ただし,n は整数と 1 1)2-1 (岡山県立大改) コ) = 0 より wはx=1 の解 例題 56 x'+x+1による割り算の (1) a, b が実数, zが虚数のとき を証明せよ. a+bz=0 a=0 かつ b=0 3 高次方程式 119 **** (2)x+2x+3x²+5x-1をx²+x+1で割ったときの余りを求めよ. 考え方 (1) a+bz=0 a=0 かつ b=0 の証明は背理法を利用する。 (2)方程式+x+1=0の解をするとは虚数でww+1=0.ω=1 で ある あわせて (1) の証明結果を利用して余りを求める。 (1)(i) a+bz=0a=0かつb=0を証明する b=0 と仮定すると, a+bz=0 より z=- a ……………① となる. b だから ここで,a,bは実数より も実数 とは よって, a=0 | 2004 3×668 ω=1 が利用でき るように変形する 通分する a+bz=0 q=0 かつ b=0 以上より, a=0 かつ b=0 このようなときは なっ 実数 (9)9 与式に代入できるよ うな2種類の変形を 行う. しかし、2は虚数であるから、①の成立には矛盾がある。 b=0 b=0 を a+bz=0 に代入すると したがって, a, b が実数, z が虚数のとき. よくいくとは限らな a+bz=0は明らかに成り立つ が虚数のとき a+bz=0a=0 / b=0= (2)x+2x3+3x²+5x-1 を2次式x'+x+1で割ったときの商をQ(x),余り 1次以下の多項式mx+n(m,nは実数) とすると,(土)1 x+2x'+3x²+5x-1 = (x2+x+1)Q(x)+mx+n .....① 方程式 x'+x+1=0の解をωとすると, ω は虚数で。。 ω'+w+1=0である。 ①の両辺にx=w を代入すると, +2ω°+3ω°+5ω-1=(ω^+w+1)Q(ω)+mw+n ここでω-1=(ω-1) (ω'+ω+1)=0 より また, =1 e=e=e④しいにきたから、今はどの ω'+w+1=0 より ω=-ω-1 ...... ⑤ ずは (w+1)24-1 考える. -1は奇数より 2-1-1 を使えるよう よって、②は,③~⑤より, - を分ける. で整理すると, (n+2)+(m-3)w=0 17+18 とする. 練習 2 3 第2章 w+2×1+3(-w-1)+5w-1=mw+n ここで,m,nは実数であるから, n+2m-3も実数, また, は虚数 したがって,(1)の結果から, n+2=0,m-3=0 つまり、 m=3.n=-2 報によって、 求める余りは, 3x-2 (1)x100-1 を x'+x+1で割ったときの余りを求めよ. 56 (2)x+ax+bx+cx-1で割り切れるとき,実数a,b,c の値を求めよ. *****

解決済み 回答数: 1
数学 高校生

この漸化式の解法が理解できません(´・ω・`) 2枚目の画像の方法でしかやったことがないので こっちの方法でできるならこの方法でやりたいです。 回答よろしくお願いします🙇🏻‍♀️⸒⸒

基本例 d =1 例 37m+= panta 00000 型の漸化式 an+1= an によって定められる数列{an) の一般項を求めよ。 [類 早稲田大] 基本 34 重要 46 \ 指針 Q+1= an panta ーのように、分子がan の項だけの分数形の漸化式の解法の手順は 漸化式の両辺の逆数をとると 2 1=bm とおくと 1 Gn+1 ·=p+- 9 an bn+1=p+qb bat1=ba+の形に帰着。 計 答 an 464 基本例題 34 と同様にして一般項 b が求められる。 また逆数を考えるために,(n≧1)であることを示しておく。 CHART 漸化式 an+1= am pantg 両辺の逆数をとる 469 An+1= an 4an-1 ①とする。 ①において, an+1=0とすると α = 0 であるから, α=0 となるnがあると仮定すると an-1=an2=......=α=0 ところがα= 1/2(0)であるから,これは矛盾。 4a-05 a-1=0 これから an-2=0 以後これを繰り返す。 漸化式と数列 5 よって、すべての自然数nについて α0である。 ①の両辺の逆数をとると 逆数をとるための十分条 件。 1 4 an+1 an 1 4a-1 A An+1 an 両 両法 法 1 _=bm とおくと bn+1=4-bn an これを変形すると bn+1-2=-(b-2) 計算 1 また b1-2= -2=5-2=3 や ai ゆえに、数列 {bm-2} は初項3, 公比-1の等比数列で n-1 bm-2=3(-1) すなわち bm=3(-1)"'+2 したがって an= 1 1 bn3.(-1)"'+2 特性方程式 α = 4-α から α=2 b= という式の形か 1 an 5 b=0 NC 国分数形の漸化式 α+1= rants (s0) の場合については, p.484, 485 の重要例題 46, pantg 47で扱っている。 37 = 1, an+1= 3an 6an+1 によって定められる数列{a} の一般項を求めよ。 C:-1 buii+1=3(bit1)

解決済み 回答数: 1
数学 高校生

常用対数 (ィ)が分かりません( ˘•ω•˘ ).。oஇ どっからその数出てきたの?って感じです。 それも踏まえて回答いただけるとありがたいです😭よろしくお願いします🙇🏻‍♀️⸒⸒

6 基本 例 191 最高位の数と一の位の数 0000 12® は桁の整数である。 また, その最高位の数は で,一の はである。 ただし, 10g102=0.3010, log103= 0.4771 とする。 指針 (ア)(イ) 正の数Nの桁数は logie N の整数部分, 最高位の数は10gio N の小数部分に注目。 なぜなら, Nの桁数をkとし, 最高位の数をα (αは整数, 1≦a≦9) とすると Na+1) ・10400... 0 0 がん1個) からα99.9 (9がk-1個)まで logio (a10-1)log10N <10g10(a+1)・10^-1} 各辺の常用対数をとる。 k-1+logioalogoN <k-1+log10(a+1) login (4・10=logioa+logait よって, logio N の整数部分をp, 小数部分をg とすると logioag <logio (a+1) p=k-1, 1 () 121, 122, 123, ・を計算してみて,一の位の数の規則性を見つける。 (ア) 10g 10 126=601ogio (223)=60(210g102+10g103) =60(2×0.3010+0.4771)=64.746 10g1012=6010g 12 12=22.3 解答 ゆえに 64<log10 1260<65 よって 10641260 1065 (イ)(ア)から したがって, 1260 は 65 桁の整数である。 log1012=64+0.746 ここで 10g105=1-10g102 =1-0.3010=0.6990 10g106=10g102+10g10 3 =0.3010+0.4771=0.7781 ゆえに すなわち よって 10g105 < 0.746 <10g106 5<100.7466 5・10641064.7466・1064 すなわち 5.106412606.1064 したがって, 126 の最高位の数は 5 (イ)の別解(ア)から 1260=104.746=10 10° <10.745 < 10'であるか ら, 1074 の整数部分が 126 の最高位の数である。 ここで, 10g105=0.6990 から 100.69905 |10g 10 6 0.7781 から 100.7781-6 100.6990100.74610 から 51007466 (ウ) 12', 122 123 124 125, よって、最高位の数は の一の位の数は,順に 2, 4, 8, 6, 2, 60=4×15 であるから, 126 の一の位の数は となり, 4つの数 2, 4, 8, 6 を順に繰り返す。 122 (mod10) である から12" の一の位の 6 は、2” の一の位の数と同 じ。 ③ 191 然数で,nの値はn=である。また, 8” の一の位の数はウで最高位 練習 自然数nが不等式 38 ≦10g10 8” <39 を満たすとする。 このとき,8"は桁の る。 数はである。 ただし, 10g102=0.3010, 10g103=0.4771, logio7=0.8451と (関西学院 p.312 EX

解決済み 回答数: 1
数学 高校生

常用対数 (2)が分かりません( ˘•ω•˘ ).。oஇ そもそも何進数っていう言葉の意味や考え方からあんまり理解できてないのでそこについても説明していただけるとありがたいです😭 ご回答よろしくお願いします🙇🏻‍♀️⸒⸒

304 基本 例 189 常用対数と不等式 logo3 0.4771 とする。 (1)3が10桁の数となる最小の自然数nの値を求めよ。 00000 (類福岡工 (2) 3進法で表すと100桁の自然数Nを, 10進法で表すと何桁の数になるか 指針 (1)まず,3" が10桁の数であるということを不等式で表す。 (2) 進数Nの桁数の問題 不等式数 N <数の形に表す ・・・・・・チャート式基礎からの数学A 基本例題 150参照。 に従って、問題の条件を不等式で表すと 3100 1 N <3100 ......① 10進法で表したときの桁数を求めるには, 不等式① から, 10″N < 10" の形を導 きたい。そこで,不等式① の各辺の常用対数をとる。 各辺の常用対数をとると (1)3" が 10桁の数であるとき 10°31010 解答 9≤n log103<10 ゆえに 9≦0.4771n<10 9 10 よって ≤n<⋅ 0.4771 0.4771 したがって 18.8n<20.9...... この不等式を満たす最小の自然数nは n=19 Nがn桁の整数 →10-1≤N<10° 基本 A 町 比べ 合. ただ 解 B (2)Nは3進法で表すと100桁の自然数であるから 3100-1100 すなわち 399 N < 3100 各辺の常用対数をとると 9910g10 3 log10N <10010g103 99×0.4771 ≦log10N <100×0.4771 47.2329 ゆえに すなわち log10N <47.71 よって 1047.2329 N1047.71 ゆえに 1047 <N<1048 この不等式を満たす自 数は, n=19, 20である が,「最小の」という条 があるので, n=19 したがって, Nを10進法で表すと, 48桁の数となる。 別解 10g103=0.4771 から 100.4771=3 ゆえに, 3% N <3400 から (1004771) ≤N < ( 100.4771) 100 1047.2329 N1047.71 よって ゆえに 1047 <N<1048 したがって, Nを10進法で表すと, 48桁の数となる。 <p=logaM⇔d=" 練習 log102=0.3010, log103=0.4771 とする。 189 (1) 小数で表すとき, 小数第3位に初めて0でない数字が現れるような自 然数nは何個あるか。 〔類 北里大) (2) logs 2 の値を求めよ。 ただし, 小数第3位を四捨五入せよ。 またこの結果を 利用して, 4' を9進法で表すと何桁の数になるか求めよ。

解決済み 回答数: 1
数学 高校生

常用対数 これの(2)がなんで39桁になるかが分かりません( ˘•ω•˘ ).。oஇ 回答よろしくお願いします🙇🏻‍♀️⸒⸒

の最大値と最小値を求めよ。 本 188 常用対数を利用した桁数, 小数首位の判断 ①①①①① Ag2=0.3010,10gto3=0.4771 とする。 a lagio, logio 0.006, logiov/72 の値をそれぞれ求めよ。 は何桁の整数か。 100 小数で表すと、小数部位に初めてでない数字がれるか p.302 基本事項2 の累乗の積で表してみる。 なお,10g105の5は510÷2と考える。 (1) 底は10で, log102, 10g103の値が与えられているから,各対数の真数を2,310 3 2100 (2) (3) まず 10g 10 65, 10g10 を求める。 解 あり 解答編 .190 検討 参照。 正の数Nの整数部分が桁⇔k-1≦log10N <k 正の数 N は小数第k位に初めて0でない数字が現れる⇔k≦logN<-k+1 CHART 桁数, 小数首位の問題 常用対数をとる 303 10 (1) log105=logo =10g1010-10g102=1-0.30100.6990 log10.006=login (2・3・10-)=10g102+log10 3-310g 10 10 =0.3010+0.4771-3=-2.2219 logi√72=logio (2-3) = (310gin2+210gi3) <log1010=1 重要 10g 5=1-log 2 この変形はよく用いられ る。 √A=A =12(3×0.3010+2×0.4771)=0.9286 (2) log 10 650-50 log106=50 log10(2.3) =50(10g102+10g103) =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10 65 39 よって 1038 <6501039 したがって, 650 は 39桁の整数である。 2\100 (3)10g10( =100(10g102-10g103) 3 (2) 10 ≤N<10%+1 ならば,Nの整数部分 は (+1) 桁。 =100(0.3010-0.4771)=-17.61 -18<logio ゆえに よって 10-18< 2 *<(3) 200 100 <-17 <10-17 ゆえに、小数第18位に初めて0)でない数字が現れる。 5章 (3) 10 ≤N<10-*+1 ならば, Nは小数第 位に初めて0でない数 字が現れる。 練習 188 log 102=0.3010, 10g103=0.4771 とする。 15 は 桁の整数であり, は小数第 1位に初めて0でない数字が現れる。 3100 3-5 p.312 EX121

解決済み 回答数: 1