学年

教科

質問の種類

数学 高校生

この問題の(4)なんですが、2枚目の鉤括弧を書いたところまでは分かるのですが、(-1)がでてくる辺りから分からなくなってしまいます!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

② 24+1-√34 4+4+1=0 (n-1)(w+w+1) = 0 151110 x2x+1-03 高次方程式 10 例題 55 1の3乗根 **** -1+√3i @= 2 とするとき 次の式の値を求めよ. ただし, n は整数と する. (1) W2005 (2) 1+ + 1 @ w" 1 (3)(1+ω-ω^) ( 1-w+ω^) (4) ω'+ (ω+1)2"-1 (岡山県立大改) 考え方 ω は x + x +1=0の解であり,1=(x-1)(x²+x+1)=0 より は =1の 解でもある.つまり,1の3乗根は1ww なので は1の3乗根の虚数のうち の1つである. (ωキ1 であることに注意する.) 75 __1+√3i 解答 W= より、 20+1=√3i 2 両辺を2乗して (2ω+1)=3i, 4ω'+4ω+1=-3 これから使う性質 ついてまず証明し おく. したがって, w2+w+1=0 (1) W2005W2004xw=(ω3)668Xw また, ω-1=(ω-1) (ω'+w+1)=0 より =1 -1+√3i =1668xw=w=- 2 2004=3×668 ω=1 が利用でき るように変形する 1 1 w²+w+1 0 (2)1+ + =0 @ W² W (3) ω²+w+1 = 0 より, 1+w=-w m よって, (1+wlω^)(1-e+w) 通分する. 1+ω°= W 与式に代入でき www うな2種類の変 行う. M =(-ω-)(-ω-) =-2ω²×(-2ω)=4ω=4 (4) ω'+w+1=0 より, w+1=-w したがって, (ω+1)2" '=(-ω^)2=(-1)2" 'ω =(-1)xω-2=3(x-1)Xw" + -1 2(2n-1) まずは (+1) 2 を考える. n+1 2n-1は奇数 =-(13)"-1.1"+1=-W"+1 (−1)'"'=-1 よって, W"+1+(+1)2"-1=W"+"+1=0 '=1 を使える |-2を分け Focus の2大公式 =1, ω°+w+1=0 練習 55 (1)x1=0 の虚数解の1つを とするとき、次の式の値を求めよ. (ア)+ω'+1 (イ) 1+w +ω°+w'+ω'+ω°++w" *** -1-√3i (2) w=- とするとき、次の式の値を求めよ. ただし, n は整数 2 (7) (w²-w+1)³ (1) (1-w)(1-w²)(1-w') (1-w³) 2+(1) 3n

解決済み 回答数: 2
数学 高校生

この問題の四角で囲んだ箇所の計算が分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

1 等差数列と等比数列 (39) Think 例題 B1.16 等比数列と図形 **** ¥ Ai(1,α)/l 直線 y=ax (a>0) を l とする.ℓ上の点 A (1, α) からx軸に垂線を下ろし、その足B, からに垂線を下ろし, その足を A2 とする. さらに点Aからx軸に垂線を下ろし、その足 を B2 とする. 以下これを続けて, 線分 A3 B3, A,B, ・・・・・・ を作る. また線分ABの長さを l とおく. (1) l1, l2, l3, ・・は等比数列であることを示せ. Az A3 O (2) li+ l2+ ls+ ...... + ln を a で表せ. (明治学院大改) 「考え方」 解答 y=ax と x軸のなす角を0とおくと, △AOBABABA2B2 A2B2A3co・・・・・・ より 0=∠AOB=∠ABA2=∠B1A2B2=∠A2B2A=...... (1)∠AOB= 0 とおくと, lAa より cost=- OB_ 1 OA₁ √a²+1 △ABA2△A,OB より, ∠ABA2= ∠AOB=0 したがって, A2B=AB cost=licoso 同様に, l2=A2B2=A2BICOSA B3 B2 L B₁ x A (1, α) より OB= AB=αであるから, OA₁ = √√a²+12 △ABA2とAOB ∠BA1 A2=∠OAB ( ∠AAB=∠ABO △ABIAA OB1 よって, ∠ABA2=∠AOB AAOBAA₁B₁A △BA2B2 の相似」 1 1.T =licoso.cost=licos'0= a²+1 なので, 1 同様にして, ln+1= -lm が得られる. '+1 よって, l1, l2, ls, ...... は, 初項 α. 公比 の等比数列である. +1 (2)0 より, 1 a²+1 a²+1 li+lz+ls+... + ln a{1-(a²+1)}_a{1-(a²+1)"} a°+1 (a+1)"-1_ (ω°+1)"-1 キ1 なので、 A2B2 を A B で表す できる. 1 初項 α,公比- a²+1 数列の第n項までの a a²+1 100% a a(a+1)-1 (a²+1)" dear Focus 図形のくり返し相似条件に着目し、隣接項の関係式を導 練習 直線 y=ax (a>0) をℓとする. l 上の点A(2, 2a) からy軸に垂線を 1.16 その足 B, からℓに垂線を下ろし、その足をAとするさらに点Aから *** 垂線を下ろし、 その足をB2 とする. 以下これを続けて, 線分A3B3, Al * a

解決済み 回答数: 1