学年

教科

質問の種類

数学 高校生

数lの三角形の外心と垂心にについての問題です。 黄色い線で引いたところが分からないです。 自分は、①からNMとBCが等しいと分かったから③になると思ったのですがネットで調べたところ、平行=等しいではないと書かれていたので、③の成り立つ条件が分からなくなりました。 稚拙な文章... 続きを読む

69 Ca 20° A 30 B ●362 基本事項 3 ば、(1)にお 外接円を考 367 基本 例題 67 三角形の外心と垂心 00000 ABC の辺BC, CA, ABの中点をそれぞれL, M, N とする。 △ABCの 明せよ。 ただし, △ABCは鋭角三角形または鈍角三角形とする。 外心OはLMN の垂心であることを、次の3つのことを示すことにより証 OLINM, ONILM, OMILN CHART & SOLUTION p.362 基本事項 3. 三角形の外心と心 区別をはっきりと 外心 垂心 3辺の垂直二等分線の交点 3頂点から対辺またはその延長への垂線の交点 また, 中点連結定理を利用する。 この例題において、 例えば△ABC と中点N,Mに対して 忘れぬ AN=NB, AM=MC NM//BC 3 7 解答 N,Mはそれぞれ辺 AB, CA の 中点であるから 鋭角三角形 NM // BC A . ① 点Oが ABC の外心 ⇒点0は辺BCの垂直二 等分線上にある。 を利用。 角) x2 点OはABCの外心であり, 点L は辺BCの中点であるから N MO 0 0 h 三角形の辺の外心、内心、重心 ①,② から OLLBC OLINM ・② ・③ B B L H C 同様に, 点L, M はそれぞれ 辺BC, CA の中点であり, 鈍角三角形 A ON⊥AB であるから B N M ONILM ④ 点L, Nはそれぞれ辺BC, AB の 中点であり, OMICA であるから B 2 # AC L OMILN *****. ⑤ ③ ④ ⑤ から, 点Oは△LMN CA: CD- 垂心である。 とし nf △ABC が ∠A=90° の直角三角形の場合, △LMNは ∠L=90° の直 角三角形となり △ABC の外心O (点L)は△LMN の垂心となる。 ① inf, 単に 「Oが△LMN の垂心であることを証明せ よ」 という場合は,左の解 答において, ③~⑤のうち HA2つを示せばよい。 MOS-HA

未解決 回答数: 1
数学 高校生

この問題の1番について、 a+5、a +3を2つの自然数 を用いて表していると思うのですが、なぜ文字は自然数 K のみだけ、とかじゃだめなんでしょうか?

例題 108 倍数 互いに素に関する証明 今は自然数とする。 α+5は4の倍数であり, α+3は6の倍数であると α+9は12の倍数であることを証明せよ。 自然数αに対し, a と α+1は互いに素であることを証明せよ。 CHART & SOLUTION 倍数である, 互いに素であることの証明 p.426 427 基本事項 1.5 を自然数として α+5=4m, a+3=6nと表される。そして、「αの倍数かつ の倍数ならば ともの最小公倍数の倍数」であることを利用する。 また、aとbが互いに素のとき 「akが6の倍数ならば、kはもの倍数」であることを 利用してもよい ( 参照)。 (2) 互いに素である 最大公約数が1 最大公約数をg とおいて,g=1であることを証明すればよい。 自然数 A,Bについて AB=1 A=B=1 を利用する。 解答 なぜ 同じ買だめ? 経と同じ異だめ? (1)+5,α+3 は,自然数 m n を用いて a+5=4m, a+3=6n と表される。 a+9=(a+5)+4=4m+4=4(m+1) ① a+9=(a+3)+6=6n+6=6(n+1) ② よって、 ① より α+9 は4の倍数であり, ② よりα+9 は 6 の倍数でもある。 したがって, α+9は4と6の最小公倍数12の倍数である Tisan's 割る数が 4章 互いにか13 素数とは 別解 (1) ① ② から 4(m+1)=6(n+1) すなわち 2(m+1=3(n+1) 2と3は広いに素である から m+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに a+9=4(m+1) 数と倍数

回答募集中 回答数: 0
数学 高校生

汚くて申し訳ないです💦 inf(写真下部)について質問です。 文章の理解はできたのですが、★部分をもう少し具体例で理解したいと思いました。例えばどんなものがあるのか教えていただけませんか?

トを問 4で外接する2円 0, 0' がある。 Aにおける共通接線上 点A の点Bを通る1本の直線が円0と2点C, Dで交わり, B 00000 明せよ。 を通る他の直線が円 0′ と 2点E, F で交わるとする。こ のとき, 4点C, D, E, F は1つの円周上にあることを証 OA OXF p.394,395 基本事項 3. 基本 82 403 CHART & SOLUTION 1つの円周上にあることの証明 方の定理の逆 4点が1 から、「べきの定理の逆」 を利用する方針で考える。 1つの円周上にあることは, 「円周角の定理の逆」, 「内角と対角の和が180°」, 「方べ の定理の逆」のいずれかを利用すれば示せるが,この問題では角度についての情報がな 4点C,D,E,F を通る円をかいてみると, 示すべきことが BC BD BE BF であること が見えてくる。 円0において,方べきの定理から B E ← 接線 BA, 割線 BD ←接線BA, 割線 BF BC・BD=BA2 円 0′において, 方べきの定理から 0 よって BE・BF=BA2 BC・BD=BE・BF ゆえに、方べきの定理の逆から、共 3 10 円と直線、2つの円 4点C,D,E,Fは1つの円周上にある。 に 内 inf 方べきの定理 PA・PB=PC・PD において PA・PB の値をべきという。ここで,円の半径をr とすると, [1] A 右図の [1] のとき PA・PB=PC・PD=(CO+OP)・(QD-QP) =(z+OP)(r-OP)=-QP2 [2] C D OP B B 右図の [2] のときは,同様の計算で PA・PB=OP2-r2 したがって, PA・PBの値は|OP2-2に等しい。OP2は, 点Pが固定されていれば一定の値である。すなわち 定点Pを通る直線が0と2点A,Bで交わるとき, PA・PBの値は常に一定である。 PRACTICE 90 金 円に、円外の点Pから接線 PA, PB を引き, 線分AB と PO の交点を通る円Oの弦 CD を引く。 このとき, 4点P,C, ODは1つの円周上にあることを証明せよ。 ただし, C,Dは P 足理 26 MI D B

回答募集中 回答数: 0
数学 高校生

右側の補足を読んでも分からないんですが、なぜそれぞれの確率の分子で-1してるんですか?🙇‍♂️ 6分の1かける5分の1だったらダメな理由はなんですか?🙇‍♂️

432 基本 例題 51 確率変数の期待値 ードを同時に引くとき,引いたカードの番号の大きい方を Xとする。このと 1から6までの番号をつけてある6枚のカードがある。この中から2枚のカ き, 確率変数Xの期待値 E (X) を求めよ。 CHART & SOLUTION 確率変数Xの期待値(平均) E(X)=Exp Xのとりうる値をx(k=1, 2,.....,n) とし,x=P(X = xx) とすると (X)=x+x+x=2xp k=1 p.428 基本事項 21 まず, Xの確率分布を求める。 その際, 確率Pの分母をそろえておくと, 期待値の計算がら くになる。下の解答では,C2=15 にそろえている。 解答 6枚のカードから2枚を引く方法は全部で C2通り Xのとりうる値は 2, 3, 4, 5, 6 である。 それぞれの値をとる確率は P(X=2)=282-131P(X=3)=- 15 P(X=4)=41=135, P(X=5)= P(X=6)=- 6C2 6-1_5 = 6C2 15 31_2 6C2 _5-1 = 6C2 15' 2715 15' よって, Xの確率分布は次の表のようになる。 X 2 3 45 6 計 1 2 3 4 5 P 1 Xは大きい方の数字で あるから, X=1 はあり 得ない。 X=k(26) のとき, 1枚はんのカードで 残 りは (k-1)枚から1枚 選ぶから, X=k である 確率は P(X=k)=k-1 6C2 15 15 15 15 15 ■えに, Xの期待値は 2 +5• E(X)=2-13 +3.1 +4.1/3 +5.15 +6.15 ・+3・ 15 15 _70_14 15 3 15 ・+6・ (起こりうるすべての場 合の数)=15 分母を そろえる。 (変数)×(確率)の和 答は約分する。

回答募集中 回答数: 0
数学 高校生

奇跡の逆に を求める時に図を書いて条件を満たさないものが存在しないかどうか確認するのですが、 なかなか図を正確に書けません。どうしたらいいですか?

0基本 例題 98 曲線上の動点に連動する点の軌跡 161 ののののの 点Qが円x2+y2=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQを2:1 に内分する点Pの軌跡を求めよ。 を座 連動して動く点の軌跡 CHART & SOLUTION 101 p.158 基本事項 1 つなぎの文字を消去して, x, yだけの関係式を導く ・・・・・・! TRAND 動点Qの座標を(s,t),それにともなって動く点Pの座標を(x, y) とする。Qの条件をs, fを用いた式で表し,P,Qの関係から,s, tをそれぞれx,yで表す。これをQの条件式に 代入して, s, tを消去する。 3章 除く必 解答 Q(s, t), P(x, y) とする。 y Qは円 x2+y2=9 上の点であるから s2+2=9 ① Pは線分AQ を 2:1 に内分する点であるから (s, t) A 1.1+2s x= = 2+1 1+2s 3' y= 1.2+2t_ 2+2t 2+1 (1,2) = 3 -3 0 よって S= 3x-1 t=3y-2 2 2 ●これを①に代入すると (3x-1)+(3x^2)=9 (*)+(-)-9 ** 2 ゆえに 212 x =9 3 4 3 2 よって(x-1)+(-4② 2 2 =4 ..... 3 したがって、点Pは円 ②上にある。 逆に,円 ②上の任意の点は、条件を満たす。 以上から、求める軌跡は 中心 ( 1/3 2/23) 半径20円 (x- 13 1 軌跡と方程式 P(x,y) -3 つなぎの文字 s, tを消 去。 これにより, Pの条 件(x,yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y2=9上のどの位 置にあっても線分AQは 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない。 どうやって図をかくの?

未解決 回答数: 0