学年

教科

質問の種類

数学 高校生

この赤枠のところの、両辺に16をかけるのは何故ですか? 教えて欲しいです!

[大阪産大〕 基本 113 CHART & SOLUTION 三角比の計算 かくれた条件 sin20+cos'0=1 を利用 かくれた条件 sin'0+cos20=1 tan の値は sino, cose の値がわかると求められる。 そこで を利用して, sino, cose についての連立方程式 4cos0+2sin0=√2, sin20+cos20=1 を解く。 → cose を消去し, sin0の2次方程式を導く。 解答 4cos0+2sin0=√2 を変形して 4cos0=√2-2sin sin20+cos20=1の両辺に 16 を掛けて 16sin20+16cos20=16 ①を②に代入して 16sin20+(√2-2sin0)²=16 10sin20-2√2 sin0-7=0 4cos0 +2sin=√2 4章 (2) を条件式とみて、条件式 は文字を減らす方針で COS を消去する。 13 三角比の拡張 整理して さ ここで, sin0=t とおくと 10t2-2√2t-7=0 これを解いて t=- √2 ± 6√2 ( (*) 10 よって t=-1 √2 7√2 2' 10 0° <0 <180°であるから 0<t≤1 これを満たすのは 7/2 t= 10 すなわち sin0= 7√2 10 ①から 4 cos 0=√2-2-- 7/2 2√2 10 5 ゆえに cos 0=√2 10 sine 7/2 √2 したがって tan 0=- =-7 Cos 10 10 (*) 2次方程式 ax2+26'x+c=0 の解は x=- - b' ±√b^2-ac a int sin 0, cos0 どちらを 消去? sin を消去して coseに ついて解くと, 0°<0 <180° から cos = √2 √2 2' の2 10 つが得られるが, √2 cos 0=- のときは 2 sin0 <0となり適さない。 この検討を見逃すこともあ るので, cose を消去して, 符号が一定 (sin0 > 0) の sin を残す方が, 解の吟味 の手間が省ける。 PRACTICE 1160 0°≦0≦180°の 0 に対し,関係式 cose-sino=1/23 が成り立つとき,tanøの値を求 めよ。

解決済み 回答数: 1
数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1
数学 高校生

黄チャートのこの問題なのですが、赤枠のところがよく分からないので教えて欲しいです、、 それから赤枠以降も分からないので、教えていただけると助かります😭🙇‍♀️

基本 例題 66 最大・最小の文章題 (1) 大 00000 BC=18, CA=6 である直角三角形ABC の斜辺AB上に点Dをとり, Dか ら辺BC, CA にそれぞれ垂線 DE, DFを下ろす。 △ADFと△DBE の面積 の合計が最小となるときの線分 DE の長さと,そのときの面積を求めよ。 全体が右へ 場合に分けて HART & SOLUTION 文章題の解法 Hom 基本 60 117 基本形に (軸が定義光) るから、 1 2 定義 (6-x)2 頂点で 2 54-(6-x)² よって ADBE=- -·54= 62 x² 同様に, △ABC∽△DBE であり △ABC: △DBE=62:x2 3 2x2 小となる。 +2 05 150 0<x<6 AF=6-x ① △ABC∽△ADF であり, △ABC: △ADF=62:(6-x)2 △ABC=18・6=54 であるから △ADF= 6-x)2.54 ←相似比がmin→ 面積比はm²n2 ← 三角形の面積は 最大・最小を求めたい量を式で表しやすいように変数を選ぶ DE=x とすると, 相似な図形の性質からADF, △DBEはの式で表される。 また、xのとりうる値の範囲を求めておくことも忘れずに。 解答 DE=x とし, △ADFとDBE の 面積の合計をSとする。 0<DE=FC<AC であるから A D F B E C ← xのとりうる値の範囲。 (辺の長さ)>0 3章 8 2次関数の最大・ ・最小と決定 1 (底辺)×(高さ) 別解 長方形 DECF の面積 一義城の 定額 したがって, 面積は AS 549 S=△ADF + △DBE る。 3 = -{(6-x2+x2} 27 をTとすると, Tが最大に なるときSは最小となる。 DF=3(6-x) から T=x3(6-x) =-3(x-3)2+27 0<x<6 から, x=3でT は最大値27 をとる。 よって, 線分 DE の長さが 2 =3(x²-6x+18) 3のとき, Sは最小値 0 3 6 X =3(x-3)2 +27 12.6.18-27=27 ①において, Sはx=3で最小値 27 をとる。 をとる。 よって, 線分 DE の長さが3のとき面積は最小値27 をとる。 PRACTICE 662 AC=BC, AB=6 の直角二等辺三角形ABCの中に, 縦の長さが 等しい2つの長方形を右の図のように作る。 2つの長方形の面積の 和が最大になるように作ったとき, その最大値を求めよ。 B

解決済み 回答数: 1
数学 高校生

数学 答えと違うやり方でやった(二枚目)のですが、良いのでしょうか?k=1のときを考えてないからダメだと思いますが。。

要 例題 43 虚数を係数とする 2次方程式 00000] xの方程式(1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 (x-6)=(+x)([+x) (£) ひとすると 基本 38 73 判別式は係数が実数のときに限る DOから求めようとするのは完全な誤り(下の INFORMATION 参照)。(ど)。 実数解をαとすると (1+i)μ2+(k+i)a+3+3ki=0 RBORONE ns-e+x(S-D) (1) 2章 6 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により (1) a=0, 6=0 α, kの連立方程式が得られる。 る。 .... 解答 NEDOZEURS-50-DE) to (S) 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (a2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 a+bi=0 の形に整理。 α kは実数であるから, a2+ka+3, a2+α+3k も実数。この断り書きは重要。 よって ①② から ゆえに よって Q2+ka+3=0 _Q2+α+3k=0 ...... 2 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 複素数の相等。 ← α を消去。 infk を消去すると k=1 または α=30= (L-n) + α-22-9=0 が得られ, [1] k=1のとき ① ② はともに α2+α+3=0 となる。 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 これを満たす実数 αは存在しないから、不適 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 RS ←D=12-4・1・3=-11<0 ①:32+3k+3 = 0 ②:32+3+3k=0 [1] [2] から求めるkの値はk=-46 実数解は x=3 2次方程式の解と判別式 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b c が実数のときに限る。 例えば, α=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix'+x=0の解 はx=0, i であり、 異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 43° 0-6040-0 の方程式 (1+i)x²+(k-i)x-(k-1+2)=0 実数解をもつ #th to a litt

未解決 回答数: 0
数学 高校生

絶対値を含む方程式(場合分け)の範囲です。 1枚目2枚目のそれぞれ(2)の問題ですが、 X=1、-1を場合分けする際に 1枚目の時は(ⅱ)-1≦X≦1 2枚目の時は(ⅱ)-1≦X<1 なぜ一緒のこの2つ問題では符号が違うのでしょうか。 どういった違いがあるのでしょうか... 続きを読む

基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |.r-1|=2 |精講 |x+1|+|x-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 合はポイントⅠの考え方が使えるならば、 場合分けが けラクです. (1) (解I) 解 HO |x-1|=2 は絶対値の性質より1=±2 よって, x=-1,3 (解Ⅱ) -11={ c-1|= だから, x-1 D (x≥1) -(x-1)(x<1) i) x≧1のとき ① は x-1=2 x=3 これは,x≧1 をみたす. ii) x<1のとき ①は -(x-1)=2 :.x=-1 これは, x<1 をみたす. よって, x=-1,3 (2) i) x<-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)(x-1)=4 -2x=4 ... x=-2 これは,<-1 をみたす. i)-1≦x≦1 のとき +10, -1≦0 だから +1-(-1)- これをみたす (注)くのとき +1301>0 1ェー 28-4 ic これは、1<ェを (1) 甘)、血)より (2) A(-1). ら、②は 上の数直線により、 絶対値の 40となる で場合分 はじめにし た すかどう ① ェの値にかか ②x>1のとき (3) が大きくな くー1の ェが小さく ② ポイント いこと エック 演習問題 18 (1) ☆

解決済み 回答数: 1
数学 高校生

「」の部分がわかりません。どなたか教えてください!

000 求めよ。 重要70 重要 例題 102 連立不等式が整数解をもつ条件 xについての不等式 x 2-(a+1)x+a < 0,3x²+2x-1>0 を同時に満たす 整数xがちょうど3つ存在するような定数αの値の範囲を求めよ。 [摂南大 ] 00000 155 FE 基本 31.91 重要 100 CHART • SOLUTION 連立不等式 数直線を利用 不等式の左辺は,両者とも因数分解できる。 甲 分けて解を求める。 前者では文字αを係数に含むから,重要例題 100 と同様, αの値によって場合を F 解の共通範囲に含まれる整数値の考察には数直線の利用が有効である。・・・・ 解答 3章 一残る文字 る yの条件 x2-(a+1)x+a<0 から (x-a)(x-1)<0 <-1 -a→-a 11 よって 1 a -(a+1) a <1 のとき α <x<1 a=1のとき (x-1)2<0 から 解なし (x-1)2は常に 0 以上 Ex≦1)にお 2次不等式 1 <α のとき 1 <x<a 3x2+2x-1>0 から (x+1)(3x-1)>00 O よって x<-1, <a 1 <x 2 3 3 2 3-2 23 ① 1/1 <x<1には整数は含 3 まれない。 x 3 ①②を同時に満たす整数xがちょうど3つ存在するのは a <1 または α > 1 のときである。 [1] a <1 のとき 右の図から,a<x<-1 の範囲 の整数が-2-3, -4であれ ばよい。 -5≤a<-4 a -4-3-2-101 +5 ◆α=-5 のとき,① は -5<x<1 となり x=-5 が含まれず条件 を満たす。 α=-4 のとき, ① は -4<x<1 となり x=-4 が含まれず条件 を満たさない。 (p.55 ズーム UP 参照。) 16 よって [2] α>1のとき されてい よって ① 右の図から、1<x<αの範囲の 整数が 2 3 4 であればよい。 4<a≦5 -2- (1) ・最小値 以上から -5≦a<-44 <a≦5 -1 0 1 2 3 4 13 直は示し う。 PRACTICE・・・ 102 ④ (1)不等式 2x2-3x-5>0 を解け。 (2)(1)の不等式を満たし、同時に,不等式 x2+(a-3)x-2a+2<0 を満たすxの整 数値がただ1つであるように、定数αの条件を定めよ。 [[成城大]

未解決 回答数: 1