学年

教科

質問の種類

数学 高校生

172.2 このような解法で答えを求めたのですが、記述式の問題だとしたとき、赤下線部のような記述をしても問題ないですかね??

ろえると計算し 24=log:2 = ! 3にそろえる (底を5に 解法) (与式) logs 52 logi logs 3 log. (logs'+1 log x216 logs3 基本例題 172 対数の表現 OOO (1) 10g23=a, log35=b のとき,log210 と 10g15 40 を α, b で表せ。 [名城大] 1 (2) 10gxa= 10gxb=- logxc= 24 のとき, 10gabcxの値を求めよ。 (log, blog るとよい。 ご利用してよい [久留米大] (3) a,b,c を 1でない正の数とし, 10gab=α, log.c=β, logca=y とする。 このとき, aβ+βy+ya= 1 1 1 + + が成り立つことを証明せよ。 a B Y 1 3' 指針 (1) 10,15,40をそれぞれ 分解して, 2,3,5の積で表すことを考える。 log210=10g(2.5)=1+log25 底の変換公式を利用して,10g また, 1015 40 は, 真数 405・23 に着目して、 2を底とする対数で表す。 1 ここで ! また (2) 10gabcx= である。 10gxabcの値を求める。 logx abc (3) 右辺を通分すると, 分母に αby が現れる。これを計算してみる。 を開発し 解答 (1) log210=log2 (2-5) = log₂2+log25=1+log25 t (@zolo) log3 5 = log23.log35=ab log32 よって log25= 8 log210=1+ab log1540= 10abcx= log240_log2(5.23) log215 log2 (3-5) ab+3 a+ab (2) logxabc=logxa+logxb+logxc= よって logxabc 1 1 1 aβ+βy+ya + + a B Y aby であるから ① より ab+3 a(b+1) =2 aßy=logablog.clogca=10gab. 1 1 1 + + B Y したがって、等式は証明された。 _log25+3 log23+log25s 1 1 1 + + 3 8 24 2 = (1) loga C.. loga bloga c =1 ◄log32= =aβ+βy+ya が成り立つ。 10g23 前ページ検討も参照。 ページ Foto 21 logo log (s) 基本171 で表す。コ b log25=ab (前半から) Exgol (3) 別解 したがって (左辺) aβ=logablog.c=10gac 同様に βy=10gba ya=logcb =logac+log.a+logcb 1 1 + + Y a B ETI 練習 ③ 172 (2) a, bを1でない正の数とし, A=log2a, B=logzbとする。 a,bが (1) logs2=a, logs4=6とするとき, 10g158 をa, bを用いて表せ。 loga 2+10gb2=1,10gab2=-1, ab=1を満たすとき, A, Bの値を求めよ。 [(1) 芝浦工大, (2) 類 京都産大〕 p.272 EX110 269 5章 30 数とその性質

解決済み 回答数: 1
数学 高校生

172.3 これでも大丈夫ですか??

さい。 去。 ろえ -) g53 基本例題112 対数の表現 (1) 10g23=a, log35=6のとき, log210と1015 40 を a b で表せ。 1 logx b= log.xc= のとき, 10gabcxの値を求めよ。 8' 24 ga=1 (2) 10gxa= 1 3' (3) a,b,c を1でない正の数とし, 10gab=a, log.c=β, logca=y とする。 1 1 このとき, ab+By+ya=-+ + が成り立つことを証明せよ。 a B 指針 (1) 10,15, 40 をそれぞれ 分解して, 2, 3,5の積で表すことを考える。 (2) 10gabcx= logx abc (3) 右辺を通分すると, 分母に aβy が現れる。 これを計算してみる。 363510 1 また 解答 The Parent (1) log2 10=log2 (2-5) = log₂2+log25=1+log25 ここで よって log2 10 log₂ (2.5)=1+log₂5 底の変換公式を利用して, 10g25 をa, b で表す。 また 10g 15 40 は, 真数 40=5・2° に着目して,2を底とする対数で表す。 である。 10gxabcの値を求める。 1 log35 log32 log210=1+ab |_log25= log1540= == + 1/3 + a = r -= log₂3.log35=ab RETS S00 log2 40 log215 (2) ab+3 ab+3 a+ab a(b+1) = (2) logxabc=logxa+logxb+logxc= よって logabc X= 1 aβ+βy+ya...... ① aby log2 (5.2³) log2 (3.5) 1 logxabc a log25+3 Puiglog23+10g25 =2 aby=loga blogb clogca=logab. 1+1+1/0 であるから、①より したがって,等式は証明された。 1 1 1 + + 3 11 24 8 10gac.. loga blogac 1 2 cal =1 00000 [名城大] =aβ+βy+ya が成り立つ。 aduto 1 log32= log23 前ページ検討も参照。 ( 10g25 = ab (前半から) log■ [久留米大] (3) 別解 基本171 したがって (左辺) log 1 aβ=logablog.c=logac 同様に βy=10gba Ya=logcb =logac+loga+logcb 1 1 + + Y a B 練習 (1) 10g2=a, logs4=6とするとき, log158 をa, bを用いて表せ。 ③172 でない正の数とし, A=logza, Blog2 bとする。 a, bが 2=-1、ab=1を満たすとき, A, B の値を求めよ。 芝浦工大 (2)類 京都産大] (p.272 EX110 269 5章 30 対数とその性質

解決済み 回答数: 1
数学 高校生

大学受験の過去問です。回答教えて欲しいです!

次の問題1 は 1 以下の問いに答えよ。 の中に解答を書くこと。 (1) a,bを実数として、 複素数 1-v 1+V2 (2) 2次方程式2+3c-1=0の2つのをaとするとき, of af +82= ある。 また、公差は fo (3) 初境が6で未項が16の等差数列があり、 すべてのが90 となるとき、数は のは の形に表すと、 である。 特式f(d=22-5-3 を満たす関数f(x)は である。 である。 - である。 212 3 人 となる。 (5) Blogs logs 50g 計算すると / である。 また, log2 5 x logs 3 x log」 8 を計算すると 3 wysostora. のとき、y=cos 20 +2sin 01 の最大値は である。 また、 5回投げたとき、点Pが1より右の位置にいるは 15 3 (6) 出たときは左へ2だけ進むものとする。さいころを3回投げたとき、点Pが点いる確率は である。 で 定数aの値は である。 また、そのときの (7) 数直線上で、点Pは点Oを出発し、さいころを投げて4以下の目が出たときは右へ」だけ進み、他の目が 3 である。 次の問題 2 は卵に至るまでの計算過程を書くこと。 20h=(2,-1),OB=(1,3), 06 (7,7) のとき、次の問いに答えよ。 T (1) a, B を実数として、0+801と表すとき,の値を求めよ。 (7.7)=d(2,-1)+B(1,3) 7=0+3B7=-X+9 d=2、B=3 △OAB において、辺ABと直線OCの交点をPとするときを実数としてOP=OCとせるの 値を求めよ。 (2) 直線BC上を点Qが働いて行くとき, PC が最小となるような点の座標を求めよ

回答募集中 回答数: 0