学年

教科

質問の種類

数学 高校生

加法定理の問題です。 画像の線を引いてあるところがわからないので、解説お願いしたいです。 よろしくお願いします。

第2問 (必答問題) (配点 15 太郎さんは、ボールをゴールに蹴り込むゲー ムに参加した。 そのゲームは、 右の図1のように地点 0か ら地点Dに向かって転がしたボールを線分 OD上の1点からゴールに向かって蹴り 地点 Aから地点Bまでの範囲にボールが飛び込んだ とき,ゴールしたことにするというものであっ B 3m ル ボールが転がされ、 ボールを蹴るライン A 3mi 2m 0 9m 図1 た。 ただし, ボールは点とみなし, 大きさは考えないものとする。 そこで太郎さんは, どの位置から蹴るとゴールしやすいかを考えることにした。 地点を通り,直線ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは, 0を原点とし、 座標軸を0からCの方向をx軸の正の方向、 OからBの方向をy軸の正の方向となるようにとり, 点Pの位置でボールを蹴るこ とを図2のように座標平面上に表した。 B. (5.0) B4 (2.0) A 0 図2 このとき 2点A, B の座標はA(0, 2), B(0, 5), ボールを蹴るラインを表す直 太郎さんは、最もゴールしやすいのは、 APBの大きさが最大になる地点Pであ ると考えた。 「レーの ∠APBの大きさが最大となる点Pの座標を求めよう。 ア イ (0<x9) とし、 図2のように, 2直線AP, BP とx軸の正の 向きとのなす角をそれぞれα, βとする。 この である。 クリー x- ウ x- エオ tana= tanβ= イ イ 1x <APB=a-B と表され、∠APBがらになることはないから,tan (e-β)を考え ることができる。 カキx tan (α-β)= となり, ケー コサx+ シス 常にクケコサx+ シス >0であるから, 0x9のとき, tan (α-β) > 0 である。 0 カキ さらに, tan (β)= と変形でき, 0<x≦9の範囲で シス タケ x+ コサ x シス タケ x+ は最小値 センをとる x ア 線 OD の方程式はy= x と表すことができる。 イ (数学Ⅱ, 数学 B 数学C第2問は次ページに続く。) (第3回-5) 以上のことから、点Pのx座標が タ のとき, ∠APBの大きさは最大である ことがわかる。 (第3回-6)

未解決 回答数: 1
数学 高校生

線を引いている①の式が分からないのと、右側にある丸の印を付けている30というのが分かりません、。なんでtan90度ではないんですか? 解説お願いします🙇‍♀️

226 基本 例 135 測量の問題 00000 | 目の高さが1.5mの人が,平地に立っている木の高さを知るために, 木の前方の |地点Aから測った木の頂点の仰角が30℃, A から木に向かって10m近づいた地 点Bから測った仰角が45°であった。 木の高さを求めよ。 指針 p.222 基本事項 2 基本 133 基本 ① 与えられた値を三角形の辺や角としてとらえて,まず図をかく。そして、 ② 求めるものを文字で表し, 方程式を作る。 特に、直角三角形では,三平方の定理や三角比の利用が有効。 ここでは,目の高さを除いた木の高さを求める方がらく。 基本 例題 1 右の図の△AF に垂線 ADI AD=DC, AI (1) 線分AD (2) sin 75°, fast 点Aから点Pを見るとき, AP と水平面とのなす角を, PがAを通る水平面より上にあるならば仰角といい 下にあるならば俯角という。 ぎょう A 仰角 俯角 三角比 特に, の比を (1)ㄥ 形 き CHART 30° 45° 60°の三角比 (2) -30° 三角定規を思い出す 2 45° √3 (1) △ 60 45% 解答 ZA △A 右の図のように, 木の頂点を D, 木の根元をCとし 解答 目の高さの直線上の点を A', B', C' とする。 h=(10+x)tan 30° このとき, BC=x (m), C'D=h(m) とすると ① h=xtan45 A' 30° B45° ②から 1.5ml x=h これを①に代入して A 10m B xm 10+h h= ゆえに √3 (√3-1)h=10 ①,②はそれぞれ 10 よって h=- √√3-1 10(√3+1) (√3-1) (√3+1) 10(√3+1) tan 45°= =5 (√3+1) 2 したがって、求める木の高さは、目の高さを加えて 5(√3+1)+1.5=5√3+6.5(m)(*) 注意 この例題のような, 測量の問題では, 「小数第2位 を四捨五入せよ」などの指示がある場合は近似値を求 め、指示がない場合は計算の結果を、 そのまま (つま 上の例題では根号がついたまま) 答えとする。 tan 30°= /30° 45% 60°の三角比の 値は覚えておくこと。 (*) 31.73から 5√3=8.65 よって、538.7 とすると 5√3+6.58.7+6.5 =15.2(m) √3 tan 30% h h から ここで x tan45°=1 10+x’ 練習 海面のある場所から崖の上に立つ高さ30mの灯台の先端の仰角がG 135 よ よく L. △ か <カ (2) 練習 ③ 136

回答募集中 回答数: 0