学年

教科

質問の種類

数学 高校生

点PとQが一致するってどういうことですか? 直線に対して対称っていうことは線対称ですよね 同じ場所にある点は線対称って言えるんですか? 旧課程のチャートでは[2]は解答に書いてなかったんですけどなんで新課程ではこれが書いてあるんですか?

基本 例題 100 直線に関する対称移動 00000 直線x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 □上を動く。 x-2y+8=0 上を動くとき,点Pは直線 [ ③ 基本 78,98 CHART & SOLUTION 線対称 直線 l に関して P と Qが対称 [[1] 直線 PQ がℓに垂直 e [2] 線分 PQ の中点が上にある Q 点Qが直線 x-2y+8=0 上を動くときの, 直線 l : x+y=1 に関して点Qと対称な点 Pの軌跡, と考える。 つまり, Q(s, t) に連動する点P (x,y) の軌跡 3 ① s, txyで表す。 ② x, yだけの関係式を導く。 13 解答 直線x-2y+8=0 ① ② 上を動く点をQ(s, t)とし, 直線 x+y=1 inf 線対称な直線を求め (1) るには EXERCISES ...... 2 121 4 に関して点Qと対称な点を P(x, y) とする。 |1 71 (p.137) のような方法も Q(s,t) あるが, 左の解答で用いた 軌跡の考え方は,直線以外 の図形に対しても通用する。 軌跡と方程式 [1] 点PとQが一致しない とき, 直線 PQ が直線② -8 01 iP(x,y) に垂直であるから t-y.(-1)=-1 (3) 垂直⇔傾きの積が1 8-X 線分 PQ の中点が直線②上にあるから xts+y+t=1 ④ 2 ③から s-t=x-y 線分PQの中点の座標は c+s ④から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから s-2t+8=0 ⑤⑥に代入して すなわち 2x-y+7=0 (1-y)-2(1-x)+8=0 [2]点PとQが一致するとき、点Pは直線 ①と②の交点 上の2式の辺々を加え ると 2s=2-2y[s] 辺々を引くと -2t=2x-2 ← s, tを消去する。 ⑤ (6) ⑦ であるから x=-2,y=3 これは ⑦を満たす。 以上から、求める直線の方程式は 2x-y+7=0 方程式 ①と②を連立 させて解く。

未解決 回答数: 1
数学 高校生

数学 軌跡 反転 この問題を複素数を利用して解く方法を教えてください

184 重要 例題 116 反転 OP・OQ=(一定) の軌跡 00000 |xy平面の原点を0とする。 xy 平面上の0と異なる点Pに対し, 直線 OP 上の 点Qを,次の条件 (A), (B) を満たすようにとる。 (A) OP・OQ=4 (B) Q は, 0 に関してPと同じ側にある。 点Pが直線x=1上を動くとき,点Qの軌跡を求めて、図示せよ。 〔類 大阪市大 指針 求めるのは、点Pに連動して動く点Qの軌跡。 基本110 連動形の軌跡 つなぎの文字を消去して,x,yの関係式を導く P(X, Y), Q(x, y) とすると, 2点P, Qの関係は 点Qが半直線 OP 上にある⇔ X = tx, Y = ty となる正の実数 tが存在する このことと条件(A) から, tを消去して,X,Yを x, yの式で表す。 そして、点Pに関 する条件 X=1より, x, yの関係式が得られる。 なお, 除外点に注意。 点 Q の座標を (x, y) とし, 点Pの座標を (X, Y) とする。 解答 Qは直線OP 上の点であるから Q(x,y) P(X, Y) X=tx, Y=ty (tは実数) ただし、点Pは原点と異なるから t=0, (x, y)≠(0, 0) 更に, (B) から, t>0である。 x2+y2 参考事項 反転 表す ※定点を中心とする半径r (r>0) の円がある。 点を通る直 に, 0と異なる点P をとり, 半直線OP 上に点P' を OP・OP'= によって定める。 このとき,点Pに点P' を対応させることを といい,点を反転の中心という。 また、点Pが図形F上にあるとき, 点P' が描く図形F' をF 反形という。円や直線の反転に関しては,次のような性質が (1)定点 0 を通らない直線の反形は, 0を通る円にな (2) 定点を通る円の反形は, 0 を通らない直線にな (3) 定点を通らない円の反形は, 0 を通らない円に [(1)の証明] O を通らない直線を l とする。 0から lに下ろした垂線と l との交点をP。 とし, Poを反転した 点をP とする。 また l 上のP。 以外の点をPとし,Pを反転した点をP'とする。 OPOP=OPOP' より, OP: OP'=OP : OP であるから、 2組の辺の比とその間の角がそれぞれ等しくなり OPPOP'P よって ∠OP'P'′ = ∠OPP=90° したがって, P'は線分 OP を直径とする円を描く。 ただし, OP'>0であるから, 点0は除く。 [(2) の証明] 線分 OP。 が円の直径となるように、点Po をとり, P 反転した点をP とする。 また, Po以外の点Pを反転した点を (A)から √x2+y2√(tx)2+(ty)2=4 ゆえに t(x2+y2)=4 よって t= 4 x2+ye したがって X= 4x x2+y2. 4y Y= tを消去する。 とすると, (1) と同様にして 4x 点Pは直線x=1上を動くから =1 x2+y2 ゆえに y X=1 に X= 代入する。 4x x2+y2 を 線分OP が直径であるから よって (x-2)'+y2=4 2- したがって,求める軌跡は 中心が点 (2,0), 半径が20円。 0 12 14 x ただし, (x,y)≠(0,0)である から, 原点は除く。 -2- 図示すると、 右図のようになる。 x2+y2-4x=0 注意 本間は、反転の問題 である。 反転については, 次ページ参照。 OPPOP'P ∠OPP=90° よって,∠OP'P'=90°から、点P'は,点P を通り OPに垂 な直線上を動く。 [ [3] の証明] 右の図のように、線分 P.P が円の直径 となるように、点Po, P1 をとり, Po, P, を反転し た点をそれぞれP, P' とする。 また, Po, P, とは異なる, 0 を通る直線と円との 交点をPとし,Pを反転した点をP'とする。 (1)と同様にして AOP POO PC 0 Po

未解決 回答数: 0
数学 高校生

式と曲線の範囲なのですが最後にn=1.2.3の場合についても考えているのはなぜですか?

数学C253 総合 実数a, rは0<a<2,0 <r を満たす。 複素数平面上で,|z-a|+|z+α|=4を満たす点の 23 (1) CaとCが共有点をもつような点 (α, r) の存在範囲を, ar 平面上に図示せよ。 く図形を Ca, |z|=r を満たす点の描く図形をCとする。 (2)(1) の共有点が z=-1を満たすとき, a, rの値を求めよ。 (1) P(z), A(a),B(-a) とすると |z-a|+|z+a|=4⇔PA+PB=4 zx+yi(x, yは実数) とすると, 楕円の方程式は よって, Caは2点A,Bを焦点とする楕円である。 x2 2 このとき =1(p>g>0) とおける。 PA+PB=2p, 焦点は2点(q',0),(√b-g', 0) [類 静岡大 ] 本冊 数学C 例題 106, 149 ←点Pの軌跡は, 2点A, Bからの距離の和が一定 である点の軌跡楕円。 ←焦点は実軸 (x軸) 上に あるから >q > 0 ゆえに 2p=4 D, √p²-q² = a...... (2) ①から p=2 よって、②から = ゆえに、楕円 Caの方程式は x2 + =1 ← から。 総合 また >0 4 4-a² また、Cは原点を中心とする半径 円であるから, CaとCが共有点 をもつための条件は 500円( √4-a² C(r=2) *Cr=√4-a²)←P(z)とすると |z-0|=r⇔OP=r Ca- √√4-a² ≤r≤2 -2 12x 10 ここで4-ar 4-a²≤r² ⇔dtr≧4 -√√4-a2 ...... ③ また 0<r≤2 ③ ④ および 0<a< 2 を満たす点 2 (a, r) の存在範囲は右図の斜線 部分のようになる。 0 2 a ただし、境界線は, 直線 α=2と点 (02) を除き,他は含む。 -2 (2) z=r(coso+isin0) [0] とす ると, z=-1から (cos 40+isin40)=cosπ+isinπ よって 1 を解くと n = 1, 40=z+2nπ (n は整数) n=1 40=x+2nπから 0=1+17 n π 4 2 π 0= 4 このとき 2= 1+1/ n=0 とすると- CとCの共有点が点 1+1/zi であるとき,楕円 + 4 4 √2 =1上に点 (1/12/1/12)があるから (-50° ←条件0<a<20 <r を 忘れずに。 ←まず, z=-1の解を 求める。 なお, z'=-1から (z+2z2+1)-2z=0 よって (22+√2z+1) xz2-√2z+1)=0 このように因数分解して 解いてもよい。

未解決 回答数: 1