学年

教科

質問の種類

数学 高校生

このような問題の場合って毎回aの値は=0 orゼロ以上orゼロ以下のように計算すればいいのですか? それとも問題文から読み取って場合によってaの範囲を変えて計算するのですか? 教えていただきたいです

DOO 移動し 重要 例題 56 1次関数の決定(2)の調 00000 関数 y=ax-a+3 (0≦x≦2) の値域が1≦y≦b であるとき、定数a,b の 値を求めよ。 基本 事項 5 CHART & THINKING HO (株) グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数αの符号がわからないから,グラフが右上 がりか,右下がりかもわからない。このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a < 0 のときグラフは右下がり。 a>0,a=0,a<0 の各場合において値域を求め, それが 1≦y≦b と一致する条件から a,bの連立方程式を作り,解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, [1] α > 0 のとき x=2のときqy=a+3 Te& [1] YA +3 この関数はxの値が増加するとyの値も増加するから, x=2で最大値 6, x=0 で最小値1をとる。 101 3章 7 関数とグラフ よって mat=1,mat=1 だと、上記の通りに これを解いて a=2, b=58=(8) Vだと、上記の通りにM1 -a+3 ならないが、直線なので ア 10 2 x これは α0 を満たす。ス のグラフ =x2の係 て,別解 称移動さ えて求め m [2] a=0 のとき THE 不等号がそのまま 反映される。 この関数は y = 3 a=0 の場合を忘れない ように。 8+(-x)=fa このとき,値域は y=3であり, 1≦y≦b に適さない。 [3] a < 0 のとき ← 定数関数 131 YA この関数はxの値が増加するとyの値は減少するから, x=0で最大値 6, x=2で最小値1をとる。 -a+3 b よって -a+3=b, a+3=1 これを解いて la+3 a=-2,6=5 +(8-x)=0 2 これは α <0 を満たす。 (0-x)= [1]~[3]から (a,b)=(2,5), (-2,5

解決済み 回答数: 1
数学 高校生

どうしてn>=2にするんですか?

の意味」 an+g がある. 133 に関係している. 1次関数y=px+αの x られ、次に,a2 を x=2 =px+gによって、次々 特性方程式について考えて 特性方程式 a=pa+q 考え方 解答 ひく? Omnian brand とおくと an+2an+1=3(Aw+1 am) +2 bm+1=36+2, bm+1+1=3(bm+1) より、 特性 じだけ平行移動して n≧2 のときの したがって、数列{bm+1} は初項12,公比3の等比数列 b"=4.3"-1 bm+1=12・3" =4・3" 方程式だから、 b=az-a=3a1+2+3-a=11 b₁+1=12 -1 1 のように考える. /y=x40~ k=1 k=1 3漸化式と数学的帰納法 (83) B1-65 **** La=3, an+1=3a,+2n+3 で定義される数列{an} の一般項 α を求めよ. 例題 B1.34 漸化式 anti=pan+f(n) (カキ1) [答] 漸化式 n+1= 30+2n+3 において,nを1つ先に進めて as+2 と に関す る関係式を作り,差をとって、(a)に関する漸化式を導く。 2αに加える (または引く)nの1次式pn+g を決定することにより,( {a,+pn+g} が等比数列になるようにする。 an+1=3am+2n+3 ☆ = 30+2(n+1)+3 ②①より、 a+b=3+(4·3-1)=3+ ②は①のにn+1 を代入したもの 差を作り, nを消去 する. ①より, a2=3a,+2+3=14 α = 3α+2 より α=-1 12.3"=4・3・3"-1 =4.3" 第 1 章 12(3"-1-1) (n-1) 3-1. =6・3"-1-n-2=2・3"-n-2 =px+q(y-a=p(x-a)) n=1のとき, a=2・3'-1-2=3より成り立つ よって. an=2.3"-n-2 6・3"-1=2・3・3" - L =2.3" n=1のときを確認 W 軸方向にα y軸方向にα 平行移動 px 解答 2pg を定数とし, an+1+p(n+1) +q=3(a,+pn+g) とおくと, an+1=3a,+2pn+2g-p an+1+pn+p+g もとの漸化式と比較して, 2p=2, 2g-p=3より,p=1,g=2 したがって,att(n+1)+2=3(a+n+2), a+1+2=6 より, 数列{an+n+2}は初項 6,公比3の等比数列 =3a+3pn+3g よ り, an+1=3a+2pn +2q-p よって, an+n+2=63"23" より an=2.3"-n-2a=3 an+1=pan+f(n) (f(n)はnの1次式 p(x-a) Focus うが同じグラフ) このαを利用して 差を作り, n を消去して階差数列を利用して考える れを1つ先に進め 注》例題 B1.33 (p.B1-63) のように例題 B1.34 でも特性方程式を使うと, α=3a+2n+3 よ 3 3 5. a=-n- となる.これより,Qn+1+n+1/2=3am+n+ ある。 a)と変形でき, x=px+gの の特性方程式 練習 <数学的背 」として通り 順番になっていない 3 と変形できるが,等比数列を表していないので、このことを用いることはできない。 注意しよう. (p. B1-66 解説参照) a=2,an+1=2am-2n+1 (n=1,2,3, ・・・・・・) によって定められる数列{a}に B1.34 ついて, ** (1) bm=am-(an+β) とおいて、数列{bm}が等比数列になるように定数 αβ の値を定めよ. (2)一般項 α を求めよ. B1 B2 C1 (滋賀大) C2

解決済み 回答数: 1
数学 高校生

青チャート数ⅠAより 例題63 2枚目の解法では求められないでしょうか? a>0、a=0(定数関数のため省きました)、a<0になることは理解しているのですが、この解法だとa<0の場合どう求めるのかが分かりませんでした… 解答通りに進める方が良いですか?

109 基本 例題 63 値域の条件から1次関数の係数決定 00000 関数y=ax+b (1≦x≦2) の値域が3≦ys5であるとき、 定数α, 6の値を求め よ。 基本62 指針 まず, 前ページの例題 62 同様, グラフをもとに値域を調べる。 3章 ここで,関数y=ax+bのグラフはαの符号で増加 (右上がり) か減少 (右下がり)の状態が 変わるから [1] a>0, [2] a=0, [3] a<0 の場合に分けて求める。 i 次に,求めた値域が3≦y≦5 と一致するように, a, bの連立方程式を作って解く。 このとき,得られたα 6 の値が場合分けの条件を満たすかどうかを必ず確認する。 CHART 値域を求めるとき グラフを利用 端点に注意 8 関数とグラフ 解答 x=1のとき y=a+b 定義域の端点の y 座標 。 x=2のとき y=2a+b YA [a>0] 2a+b [1] α>0のとき 域は この関数はxの値が増加すると, yの値は増加するから, 値 a+b≦y≦2a+b a+b よって a+b=3, 2a+b=5 これを解いて a=2,b=1 これは α>0を満たす。 1 2 x [2] α=0のとき この関数は y=b (定数関数)になるから, 値域は 3≦y≦5 値域は y= b YA [a<0] になりえない。 cecosta+b [3] a<0のとき この関数はxの値が増加すると, yの値は減少するから,値 2a+b 域は a+b≧y2a+b すなわち 2a+b≦y≦a+b 0 12 x よって 2a+b=3, a+b=5 これを解いて a=-2,b=7 これはα <0 を満たす。 以上から a=2, b=1 または α=-2, 6=7 答えをまとめる。

解決済み 回答数: 1