学年

教科

質問の種類

数学 高校生

この問題の合同式を使った解法について質問なんですが、最初のNはなぜこのように置けるのでしょうか?

S 整数の性員 例題262 考え方 3で割ると2余り, 5で割ると3余り, 7で割ると4余る3桁の正の整数 のうち、最大のものを求めよ. 不定方程式の応用 (1) (その1) Nは整数x, y, z を用いて, N = 3x+2=5y+3=7z+4 と表せるの 3で割ると余り, 5で割ると3余り, 7で割ると4余る整数をNとする。 y, zについての不定方程式ができる. 3で割ると2余る← 5 で割ると3余る 7で割ると4余る⇔ これらからNの規則性を見つける. 問題文の「3で割る,5で割る, 7で割る」から, N=15α+35万+ b,cは整数)という数を考え, 合同式 (p.440) を利用する。 (その2) (その3) N+1は3の倍数 N+2は5の倍数 N+3は7の倍数 答1 3で割ると2余り, 5で割ると3余り 7で割ると4余る 整数をNとおくと, N=3x+2=5y+3=7z +4 (x,y,zは整数) とおける. 3x+2=5y+3 より, 3x-5y=1 .....① .....1 ①の解の1つは、x=2, y=1 であるから 3×2-5×1=1 ...... ② 0304 3(x-2)-5(y-1)=0 ①-②より, したがって, 3(x-2)=5(y-1) り,x-2は5の倍数であり, kを整数とすると, x-2=5k, すなわち, x=5k+2 ...... ③ 3x+2=7z+4 3と5は互いに素よ また, ③より, 3(5k+2)+2=7z+4, すなわち, 24 15k-7z=-4 ...... ・④ ④の解の1つは,k=3, z=7 であるから, 15×3-7×7=-4 ...... ⑤ 5 ④ - ⑤ より, 15(k-3)-7(z-7)=0 ミ まず不定 3x+2= を考え 次に |3x+ を考

回答募集中 回答数: 0
数学 高校生

どこから15a+35b+21cが出てきたのですか?

考え方 解 1 例題234 整数の除法の利用 3で割ると余り, 5で割ると3余り, 7で割ると4余る3桁の正の整 数のうち,最大のものを求めよ. (その1) 題意を満たす数を書き並べて規則性を見つける. 3で割って2余る数 2,5,8,11,14, 5で割って3余る数 38 13,18,23, となり,この両方を満たす数は, たとえば8である. (その1)の考え方を数式で表してみる。 (その2) (その3) (その4) 不定方程式の考えを利用する. (p.401 例題 227 参照) 整数x, y, zを用いると 3で割って2余る数は, 3x+2 5で割って3余る数は, 5y+3 7で割って4余る数は, 7z +4 である. おき方を工夫して, p.398で学習する合同式を利用する. 「3で割って余りが 2, かつ5で割って余りが3である数」 188 37 ……① を書き並べると, 0001> 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, *100=1 ...... 4, 11, 18,25,32, 39,46,53, となり,共通な数として1番目に出てくるのが53で, 以降, 105 ごとに出てくるので,これらの数は, 53+105k (k=0, 1, 2, 3, ) と表せる. ここで,53+105k<1000 より, 947 k<- -=9.01・・・ 105 よって、求める数は, 3,8, 13,18, 23, 28, 33, 38, となり、共通な数として1番目に出てくるのは8, 2番目に 23,3番目に38であり, 以降, 15ごとに現れる. したがって, ① は, 「15 で割ると余りが8の数」に一致する. いま,この数に「7で割ると余りが4の数」 を書き並べると,公倍数 8, 23, 38, 53, 68, 83, ...... 53+105・9=998 1 約数と倍数 *** 8:58+18 (p.412 に続く) それぞれ実際に書き 出してみる. 8,23,38, 15 15 15 15は3と5の最小 105は7と15の最 小公倍数 3桁の数だから 1000 より小さい。 411 整数の性質

回答募集中 回答数: 0
数学 高校生

(2)の考え方の説明についての質問です。 問題と解答の間に考え方という枠があるとおもうのですが、その(2)について教えて下さい。 なぜ問題文では×になっているのに 急に+の計算になっているのでしょうか。 +にすることでどう解きやすくなるのかイマイチ ピンとこないので教えてく... 続きを読む

次の数列の初項から第n項までの和を求めよ. (1) 1, 1+2, 1+2+3, (2) 1・n, 2·(n-1), 3.(n-2), 4·(n-3), [考え方 |解答 よって, ・・・・・・ 数列の和の計算の基本は, 第k項を求めることである. (1) 第k項ak が ak = 1+2+3+ ...... +k のように, 数列{k}の初項から第k項までの和で表されている. そのため,第k項を求める段階でも和の公式を用いる. (2) 2つの数を足すと, 1+n=n+1,2+(n-1)=n+1,3+(n-2)=n+1, より, n +1 になるので, 第k項の右の数をxとすると, k+x=n+1 より, x=n+1-k これより, 第k項は, k (n+1-k) となる. (1) 与えられた数列の第k項をak, 求める和を Sn とすると, 第k項は, ax=1+2+3+......+k= -k=1⁄/k(k+1) = Sn=2an=2-½ k(k+1) = ¹ # (k²+k) k=1 2k=1 ...... 1/1/2+1/2/21 '+ ck 2k=1 11 1 • 2/2 + = n(n + 1) (2 n + 1) + ²/2 + 1/{ n(n+1) 2 + n(n+1){(2n+1)+3} 12 = n(n+1)(n+2) (2) 与えられた数列の第k項を αk, 求める和を Sn とすると, 第k項は, an=k(n+1-k) k=1 初項1, 公差1, 項数kの等差数列 の和 k=1 (an+bn) k=1 = Σak+Ebr k=1 k=1 2n(n+1) *< くる. よって, Sn=an = k(n+1-k)=(n+1) k-k2k(n+1-k) k=1 k=1 =(n+1)._—_n(n+1)_ __n(n+1)(2n+1) ={_n(n+1){3(n+1)−(2n+1)} = n(n+1)(n+2) n(n+1) =1/12mm(n+1)x2 =(n+1)k-k² んについての和な のでnは定数 11/1/2n(n+1) |=1n(n+1)x3

未解決 回答数: 1
数学 高校生

合同式を用いた回答の方が分からないのですが、なぜ偶数と奇数で場合分けをしているのですか?

534 XX 重要 例題 100 等差数列と等比数列の共通項 00000 列{an}の項でもあるものを小さい方から並べて数列{cn} を作るとき, 数列{cm) 数列{an}, {bn}の一般項を an=3n-1,bn=2" とする。 数列{bn}の項のうち、数 の一般項を求めよ。 CO 重要 93. 基本 99 指針▷>2つの等差数列の共通な項の問題 (例題93) と同じように,まず,a=bmとして、1mの 関係を調べるが,それだけでは {cn}の一般項を求めることができない。 そこで,数列{an}, {bn}の項を書き出してみると,次のようになる。 (an): 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, {bn}: 2,4,8,16,32, を順に調べ、規則性を a=by, Ca=bs, Ca=bs となっていることから,数列{bn} を基準として, bm+1 が数列{a の項となるかどうか, bm+z が数列{an}の項となるかどうか、 見つける。 解答 α = 2, b=2であるから C1=2 数列{an}の第1項が数列{bn} の第 m 項に等しいとすると規測性から 3-1=2m 答えを予想はできたこ ゆえに bm+1=2m+1=2m・2=(3Z-1)・2 ...... =3.21-2 よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3・4l-4 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, 数列 {cm} は公比22の等比数列で, C1 = 2であるから Cn=2.(22)"-1=22n-1 20 3・O-1 の形にならない。 22"=4"=1"≡1(mod3) [2] m=2n-1(nは自然数) とすると THE JAN ,830 V-b (s) cn=1412 などと答えてもよ 検討 合同式(チャート式基礎からの数学A 参照) を用いた解答 3n-1=-1≡2(mod3) であるから, 2=2 (mod3) となるm について考える。 [1] m=2n(nは自然数) とすると 22n-1=22(n-1).2=4”-1.2=1"-1.2=2 (mod3) [1], [2] より m=2n-1 (nは自然数) のとき 2が数列{cm} の項になるから Cn=bzn-1=22n-1 重要 初項が 10g103= C41) 10 △×(2) 初 指針 練習 数列{an},{bn}の一般項をan=15n-2, bm=7.27-1 とする。 数列{bn}の項のう (④4) 9 100 ち, 数列{an}の項でもあるものを小さい方から並べて数列{cm} を作るとき, 数列 {C}の一般項を求めよ。 03102 解 (1) 初 103- s +6 各 ゆ よ す n

回答募集中 回答数: 0
数学 高校生

合同式を用いた回答の方が分からないのですが、なぜ偶数と奇数で場合分けをしているのですか?

534 ME XX 00000 重要 例題 100 等差数列と等比数列の共通項 列{an}の項でもあるものを小さい方から並べて数列{cn} を作るとき, 数列{cn 数列{an}, {bn}の一般項を an=3n-1,bn=2” とする。 数列{bn}の項のうち、数 の一般項を求めよ。 重要 93 基本 99 指針▷>2つの等差数列の共通な項の問題(例題93) と同じように,まず,a=bmとして、1mの 関係を調べるが, それだけでは {cn}の一般項を求めることができない。 そこで, 数列{an}, {bn} の項を書き出してみると,次のようになる。 (an): 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, {bn}:2,4,8,16,32, Handlin を順に調べ、規則性を Ci=b, Ca=b3, C3 = bs となっていることから,数列{bn}を基準として, 6m+1 が数列{0.² の項となるかどうか, bm+2 が数列{an} の項となるかどうか、 見つける。 解答 a1=2, b=2であるから C1=2 数列{an}の第1項が数列{bn}の第m項に等しいとすると 3l-1=2m U-18 ゆえに bm+1=2m+1=2m・2=(3-1)・2 = 3.21-2 よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3.4l-4 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, 数列 {cm} は公比 22 の等比数列で, C1 = 2であるから Cn=2.(22)"-1=22n-1 22n=4"=1"≡1(mod3) [2] m=2n-1(nは自然数) とすると 規測性から 答えを予想はできたこ SS 3・O-1 の形にならない。 JANE 重要 初項が 10g10 3= 141) 10 △×(2) 初 30 \-=b (s) 7V=5,2V=D 検討 合同式(チャート式基礎からの数学A 参照) を用いた解答 3n-1=-1≡2(mod3) であるから, 2" = 2 (mod3) となるmについて考える。 [1] =n(nは自然数) とすると 1970 4" cn=122 などと答えてもよ L 22n-1=22(n-1).2=4”-1.2=1"-1.2=2 (mod3) [1],[2] より,m=2n-1 (nは自然数) のとき 2” が数列{cm} の項になるからコ Cn=bzn-1=22n-1 指針> 練習 数列{an},{bn}の一般項をan=15n-2, bn=7.27-1 とする。 数列{bn}の項のう (4) 100 ち,数列{an}の項でもあるものを小さい方から並べて数列{c,}を作るとき, 数列 {cn}の一般項を求めよ。 .631 02 解答 (1) 初 103- 各 ゆ よ す n G

回答募集中 回答数: 0
数学 高校生

この問題が(1)から分からないので詳しく教えてほしいです

ず。 <設問別学力要素> 大間 分野 内容 13 数列 大問 小間 →解答 Ⅱ型 6 解答 参照 解説 Ⅱ型 6 解説 参照 ④4 微分法 【III型 必須問題】 (配点 【配点】 (1) 28点. 2304 (2) 12点 40点 (1) (2) (3) 配点 8 とする. 以下において, lim- x-00 《設問別学力要素》 分野 内容 16 16 出題のねらい 群数列の規則性を理解し、 第k群の末頃まで の項数, 第k群に含まれる項の和を求めること ができるか, さらにそれらを利用して, 条件を満 たす項が第何項か、 および, 条件を満たす項の和 がどうなるかを求めることができるかを確認する 問題である. 4 微分法 f(x)=x2+ax-axlogx (aは正の定数) 10gx=0であるこ 知識 技能 O とは用いてよい. (1) f(x) が極値をとるxの個数が2であるよう なαの値の範囲を求めよ. (2) a=²のとき, f(x) の極小値を求めよ。 40点) 40年) 画 #033410 (1 配点 小問 配点 40点 (1) (2) 28 12 思考力 判断力 O 知識 技能 -S=(x)) 表現力 思考力 判断力 O O 表現力 出題のねらい 導関数を利用して関数の増減を分析することが GTD d できるかを確認する問題である. ◆ 解答 (1) f(x) の定義域は x>0 である.まず, 2 f(x)=x2+ax-axlogx, f'(x)=2x+a-a(logx+1) - 33 f"(x)=2-a x 40 であるから,f'(x) の増減は次の通り。 a (0) (∞) 2 0 f" (x) f'(x) さらに, x→+0 =2x-alogx, limf'(x)=8, x100 2x-a limf'(x) = limx2-α・ O x80 8 2015 =8 である. ここで、f(x) が極値をとるxの個数が2と なるのは,f'(x) がちょうど2回符号変化する ときであり,それは y=f'(x) のグラフが次の ようになるときである. + 2 よって, 求める条件は logx y=f'(x) () <0. に着目して万物 a-alog // <0. log>1. a> 2e. (2)a=²のときは α > 2e が成立するので, の場合に該当し, y=f'(x)のグラフは次の り。 ただし,x軸との共有点のx座標を B(a <B) とする。 (x) g(x) + (x)u(x) \ = '[(2)x(z)).

回答募集中 回答数: 0