学年

教科

質問の種類

数学 高校生

26.1 この記述でも問題ないですよね??

0 00 基本例題26 不等式の証明 [A-B>0 の利用など] ①①①①① 次のことを証明せよ。 (1) a>b>0,c>d>0のとき ! (2) a>b>0のとき LUND a > 1,6>2のとき (3) 指針 解答 (1) a>b,c>0から c>d, b>0から したがって 別解a> b,c> 0 から ac>bc したがって ac-bdbc-bd=b(c-d) [] b>0であり,c>dよりc-d>0であるから b(c-d)>0 ac-bd>0 すなわち ac>bd (2) (左辺) (右辺) の式で通分する。 (3) (左辺) (右辺) の式で因数分解する。 【CHART 大小比較は差を作る よって 不等式 A>B を証明するには, A-B>0であることを示す。あること A>B 20 ↓ 差 A-B>0 ac>bc bc> bd ac>bd a b a(1+b)−b(1+a) 1+a 1+6 (1+a)(1+b) = したがって ac>bd a-b (1+a)(1+6) a 1+a a 1+a b 1+6 (zd+xp a-b (2) (1+a)(1+b) a>b>0より, a-b> 0, 1+α> 0, 1+b>0であるから >O ab+2>2a+b bob 1+6 = A≤³y0[+xa (1) 0=8-40=y6-1 (-vE) (r0ItxDx) -²₂01+xx0-³x= したがって (3) ab+2-(2a+b)=a(b-2)-(6-2)=(a-1)(b-2) a> 1,6>2より,α-1> 0, 6-2>0であるから (a-1)(b-2)>0 ab+2>2a+b p.47 基本事項 ① (40+8+ -20)=²xEXE=E (1) 差をとるよりも, 大小 係の基本性質を利用した が示しやすい。 ARS <A> B,B>C⇒A>C kde th HROUVIER この説明を忘れずに。 (左辺) (右辺) > 0 立剣低 木の方 (+) (+) (+) ① (zotud +20) ≤('s+|+x)(²+8+) @ αに着目して整理する。 00 この説明を忘れずに。 左辺) (右辺) > 0

回答募集中 回答数: 0
数学 高校生

22. 1.2両方この記述でも大丈夫ですか??

42 基本例題 22 条件つきの等式の証明 a+b+c=0のとき, 次の等式が成り立つことを証明せよ。 (1) a²+26²-c²+3ab+bc=0 (2) a³ + b³ + c³ = -3(a+b)(b+c)(c+a) 指針a+b+c=0は条件式であるから, 文字を減らす方針で進める。 すなわち, c=-a-b[=-(a+b)] として, cを減らす。 【CHART 条件式 文字を減らす方針で使う 解答 (1) a+b+c=0より, c=-(a+b) であるから a²+26²2-c2+3ab+bc=a²+26²-(a+b)2+3ab-b(a+b) =a²+26²-(a²+2ab+b²) +3ab-ab-b2 =0 (2)a+b+c=0より, c=-(a+b)であるから a³ + b³ + c³+3(a+b)(b+c)(c+a) このとき, a,bは自由に動くことができて, この問題は, a,b,cの3文字から 2文字についての等式の証明になる。 (2) 前ページ例題21の指針3の方針。 A=B⇔A-B=0 から,a3+b+c3+3(a+b)(b+c)(c+α)=0を証明する。 HAL =a³+b³—(a+b)³ +3(a+b)(b¬a−b)(-a-b+a) =a³+b³-(a³+3a²b+3ab²+b³)+3ab(a+b) =-3a²b-3ab²+3a²b+3ab² =0 したがって a³+b³+c³=−3(a+b)(b+c)(c+a) 本 ..40 基本 0 a b a b (2) 答 b <c=-a-b=- (a+i) えに <{-(a+b)}^=(a+b) =(a+b)-3ab(a+b を利用してもよい。 につ a b (a+b) を展開せずにゆえ a³ +6³ 検討 条件式を丸ごと利用する a+b+c3=3abc すなわち+b+c-3abc=0を証明すればよい。 ここで, p.10で取りチー a+b+c=0 より, a+b=-c, b+c=-a,c+α=-bであるから, (2) では た因数分解の公式5を利用すると,次のように、条件式a+b+c=0を丸ごと代入できる。 a³ + b³ + c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)-0 こ 考

回答募集中 回答数: 0