学年

教科

質問の種類

数学 高校生

最後の赤色で囲っている条件付き確率がわかりません、教えてくだいさい。。。

第3問 Aさんの袋には赤球が2個 白球が1個入っている. Bさんの袋には赤球 が1個, 白球が2個入っている. AさんとBさんはそれぞれ自分の袋から 球を1個取り出し, 色を調べてから元に戻す. もし取り出された球の色が同 じならば,Aさんの持ち点に1点を加える. もし取り出された球の色が異な れば,Bさんの持ち点に1点を加える. ここまでの操作を1回の試行とする. この試行を何回か繰り返し, 先に持ち点が2点になった者が優勝する, A さ んもBさんもはじめの持ち点は0点である. 問1 1回目の試行で, 取り出された球の色が両方とも赤である確率は イ である. 問2 1回目の試行が終わったときにAさんの持ち点が1点である確率は ウ である。また、2回目の試行が終わったときにAさんの持ち点が I オカ 40 1点である確率は である. キク 81 ケコ 問3 2回目の試行が終わったときにAさんの優勝が決まる確率は サシ であり、3回目の試行が終わったときにAさんの優勝が決まる確率は スセソ 160 テトナ 304 である. また, Aさんが優勝する確率は である. タチン 729 ニヌネ 1729 問4 Aさんの袋から取り出された球が1回目の試行でも2回目の試行でも白球 であるとき,Aさんが優勝する条件付き確率は である. ヒフ - -51- - 12(56-52)

解決済み 回答数: 1
数学 高校生

1枚目の写真の不等号がわかりません。 なぜウオは≦、≧でしたに=があるのですか?個人的に問題文の範囲が≦とか下に=があるからかなと思ったのですが、2枚目の写真、これはフォーカスゴールドのやつなのですが、これも範囲は≦とかで下に=があるので、なぜ、1枚目の方の問題は≦、≧にな... 続きを読む

3 2 数学Ⅰ・数学A 2015年度 本試験 数学Ⅰ・数学A 3 (注)この科目には,選択問題があります。(2ページ参照) y=-x2+2x+2 第1 1問 (必答問題) (配点 20 ) 問題 選択方法 第1問 必 答 第2問 必 答 2 4 2次関数 y=-x+2x+2 ① のグラフの頂点の座標は ア 3である。また -(x-1)2+3 y=f(x) =-(x²-2x)+2 ={(スーパー13+2 (x-1)2+1+2 第3問 必 答 -6 第4問 いずれか2問を選択し、 はxの2次関数で,そのグラフは、①のグラフをx軸方向にかソ軸方向にだ 平行移動したものであるとする。 y-9=-{(x-P)-132+3,y=(x-P-12+3+& 第 5問 解答しなさい。 (1)下 オ には,次の①~④のうちから当てはまるものを一つ 第6問 ずつ選べ。 ただし、 同じものを繰り返し選んでもよい。 y=(x-1)+3 (y-8)=(x-P)-132×3 x=2のとき y=-12-1743=+2 x=4のとき y=-(4-1)^+3=-6 y=(x-P-12+3+軸x=Pel.(Ptl.3+) 2≦x≦4 Maxf(2)→x=2が 12EXε4 Minf(2) → X=2p11 Minとるところ 2 4 Maxとるところ 2+4 Pt1≦2 均衡 =3 2 P§ (-- (7)(+) 35P+1 P+1≧3 X-P+1 414 © > ① < 2 ≥ ③ W ④ キ 2 x 4 におけるf (x) の最大値が f (2) になるようなの値の範囲は ウミ I であり、最小値がf (2) になるような♪の値の範囲は 2 カス P である。 r-n+1 P≧2-(オリ(カ) (数学Ⅰ・数学A第1問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

この問題の ク で、2が間違ってる理由が分かりません。 何故Nの最大値は境界を通るNの値と一致しないのでしょうか?? 0が合ってる理由は分かりますが2がわならないです。。 教えて欲しいです! また、スセソタチで、何故格子点の最大値が答えになるのでしょうか? 解説お願いします!

95-4+18 第3問 (必答問題) (配点 28) 2 y =++N y- もは x,yを実数として、①の2つの不等式, およびx≧0, y≧0 からなる連立不等 式の表す領域をDとする。 こで,x,y 式 ③、④. る連立不等 部分(埃 た、直線 y=-3x [1] あるサプリメントには, 1包が1g入りで10円の顆粒 1錠が0.2gで30円の錠 剤の二つのタイプがある。 N=ア x+yの表す直線をlとすると このことから,x,yが①を れは傾き 含まれる栄養成分は, 顆粒では1包に0.3g, 錠剤では1錠に0.1gであり, 残り の成分はすべて添加物である。 満たす0以上の実数のとき,Nはx=y= コ で最大値 サシをとることがわ 18 かる。 このサプリメントを二つのタイプの価格の合計が180円以下,かつ,含まれる添 加物の合計が3.6g以下となるように使用し、含まれる栄養成分の合計を 0.1×N(g) とするときの最大値を求めよう。 3 顆粒をx包, 錠剤をy錠使用する場合, N= x+y であり,価格,添加物 の合計の条件は3 x+ イ である。 X+24=(F 8 y≤ ウエ かつ オ x+y カキ 大学Ⅱ, 数学 B 数学C第3問は次ページに続く。) ク | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ ①を満たす0以上の実数x, yで,N= アx+yとなるものが存在する ことと, 直線ℓが領域Dと共有点をもつことは同値である。 よってNの 最大値は,直線lが領域 Dと共有点をもつような最大のNの値と一致する ① ①を満たす0以上のすべての実数x, y, N= ア x+yとなること と、 直線 l が領域Dと共有点をもつことは同値である。 よって, Nの最大 値は, 直線ℓが領域Dと共有点をもつような最大のNの値と一致する ② 直線 l が領域Dと共有点をもつとき、領域D に属する点 (x, y) で 直線 上にあるものが存在する。 よって, Nの最大値は, 直線ℓが領域 Dの境界 を通るときのNの値と一致する 直線 l が領域 Dと共有点をもつとき、領域Dに属するすべての点(x,y) が直線上にある。 よって, Nの最大値は, 直線 l が領域 Dの境界を通る ときのNの値と一致する ( ③ かつ ④ で、 N= ことと, の最大値 致する より きNは たがっ 3-2 eが きの 下図 上が x よび (第2回5) しかし、実際に使用するのは1包単位, 1錠単位であるから, x, yが①を満たす 20以上の整数のときを考えると, Nはx=y= ス および, x= セ y= で最大値 タチをとることがわかる。 (数学ⅡI, 数学 B, 数学C第3問は次ページに続く。) (第2回-6)

解決済み 回答数: 1