学年

教科

質問の種類

数学 高校生

(1)についてです。 解答の2行目から3行目のところが理解できません。 解説よろしくお願いします。

38 重要 例題 19 因数分解 (3次式) 00000 (1) α+6=(a+b)-3ab(a+b) であることを用いて,a+b+c-3abc を因数分解せよ (2)x-3xy+y+1 を因数分解せよ。 CHART & SOLUTION 3次式の因数分解 (1) 組み合わせを工夫して共通因数を作る。 まず,'+6について+6=(a+b)-3ab(a+b)を用いて変形すると a+b+c-3abc=(a+b)-3ab(a+b)+c-3abc 次に,(a+b)+c について, a+bを1つの文字とみて (a+b)+c={(a+b)+c}{(a+b)-(a+b)c+c} 基本11 また,-3ab(a+b)-3abc=-3ab(a+b+c) であるから,共通因数a+b+cが現れる。 (2)1=13 と考えると, (1) の結果が利用できる。 まとめ 多項式の積の ができる。 し ことも多い。 ここでは, しながら因 (1) 共通 すべての 例 6c 項の組み 例 (2) まと 例 G 41 (1) a+b+c³-3abc =(a+b)+c-3abc =(a+b)-3ab(a+b)+c-3abc =(a+b)+c-3ab(a+b)-3abc まず, +6 を変形。 3ab が共通因数。 8+1a-(x+ ← A'+c3 =(A+c)(A2-Ac+c^) ← (a+b+c) が共通因数。 +x (x)= ={(a+b)+c}{(a+b)-(a+b)c+c2}-3ab{(a+b)+c} =(a+b+c)(a2+2ab+b2-ac-bc+c)-3ab(a+b+c) =(a+b+c)(a2+2ab+b2-ac-bc+c-3ab) 2002 T ( 2 (2)x3xy+y+1 =(a+b+c)(a+b2+c-ab-bc-ca) 3=x+y+13-3.x.y.1 108 BRE =(x+y+1)(x+y+12-xy-y・1-1・x) =(x+y+1)(x2-xy+xy+1) ← 輪環の順。 113 と考えると, (1) の 結果が利用できる形に 変形できる。 項の組 例 (3)最 2つ以 例 a → x, b→y,c→1と 考える。 “た 例 (4) 例 (5) POINT (1) の結果は利用されることもあるので,公式として覚えておくとよい。 a+b+c-3abc = (a+b+c)(a+b2+c2-ab-be-ca) 例えば、 また,これから,対称式+b+cは, (a+b+c)2=a+b2+c+2ab+2bc+2ca を利用すると,次のように基本対称式で表されることもわかる。 a+b°+c°=(a+b+c){(a+b+c)-3(ab+bc+ca)}+3abc 因な PRACTICE 198 次の式を因数分解せよ。 (1)x+3xy+y-1 (2) x³-8y3-23-6xyz と

未解決 回答数: 0
数学 高校生

格子点の個数で(1)って(2n-2k+1)の+1ってどこから来たのですか?

133 格子点の個数 3つの不等式 x≧0, y ≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) D に含まれ, 直線 x=k (k=0, 1, ...,n) 上にある格子点 精講 (x座標もy座標も整数の点)の個数をんで表せ。 Dに含まれる格子点の総数をnで表せ. 計算の応用例として, 格子点の個数を求める問題があります。 れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 上げることもできますが,このように, nが入ってくると数える手段を知ら ないと解答できません. その手段とは,ポイントに書いてある考え方です。 ポイントによれば, 直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は 2n x=k (k, 0), (k, 1), …, (k, 2n-2k) 2n-2k の (2n-2k+1) 個. 注 y座標だけを見ていくと, 個数がわかります. n (2)(1)の結果に,k=0, 1, ..., n を代入して すべ て加えたものが,Dに含まれる格子点の総数. 0 X n Σ(2n-2k+1) 【等差数列 k=0 =n+1(2n+1)+1} 2 10=(n+1)2 注 計算をする式がんの1次式のとき, その式は等差数列の和を表 しているので、12/27 (atan) (12) を使って計算していますが,もち 等差数列の和の公式 n n ろん,∑(2n+1)-2Σk として計算してもかまいません. k=0 k=0

未解決 回答数: 1
数学 高校生

この問題なのですが、判別式を使って解けないでしょうか??0より大きいということはグラフが解をもたないか重解をもつときだからd=<でいいのかなって思ったんですけど.....この問題は必ず場合分けをしないと解けないのでしょうか.判別式は使えないんでしょうか.....

例題 97 文字係数の2次不等式 志の不立 ★★★ 次のxについての2次不等式を解け。 (1) x2-3ax +2a²+ α-1>0 (2) ax²-5ax+6a < 0 思考プロセス 《RAction 不等式は, グラフとx軸の位置関係を考えよ 係数に文字を含んでいても, まず左辺の因数分解を考える。 場合に分ける どちらが大きい? 例題 93 + B X 連立不等 例題 98 2つの2次不等式 x 整数がただ1つとな <ReAction 連立不 (1) 因数分解すると {x-(αの式)}{x- (αの式)}> 0 (2)問題文で「2次不等式」とあるのでα 0 である。 因数分解すると a(x-2)(x-3) < 0 ↑グラフは単純に右の図でよいか? 3 x Action》 文字係数の2次不等式は, 方程式の解の大小・グラフの向きで場合分けせよ 解 (1) x3ax +2a + α-1>0より x-3ax+(2a-1)(a+1)>0 (x-3)(x-3) {x-(2a-1)}{x-(a+1)}>0 .... DDR (x- (ア) α+1 < 2a-1 すなわち α > 2 のとき 不等式① の解は x < a +1,2a-1 <x (イ) α+1=2a-1 すなわち a=2のとき 不等式① は (x-3)20 2a+a-1-(2a-1)(a+1) 仕入 2つの解の大小関係で場 合分けする。 (ア) して + a+1 /2a-1x よって, 解は3以外のすべての実数 (ウ) 2a-1 <a +1 すなわち a < 2 のとき 不等式①の解は x<2a-1, a +1 <x (ア)~(ウ)より, 求める不等式の解は (イ) + + 3 x (ウ) + 2a-1 + la+1x α > 2 のとき x <α+1, 2a-1 <x a=2のとき 3 以外のすべての実数 la < 2 のとき x <2a-1, a +1 <x (2) ax²-5ax+6a < 0 より a(x-2)(x-3) < 0 与えられた不等式は2次不等式であるから a≠0 (ア) α > 0 のとき (ア) 2<x<3 (イ) α < 0 のとき x<2,3<x (ア)(イ)より, 求める不等式の解は [a > 0 のとき 2 <x<3 la < 0 のとき x < 2, 3 <x ato 練習 97 次のxについての2次不等式を解け。 (1)x2-x+α(1-4) <0 (イ) A 3 x a0 のとき 下に凸 4 < 0 のとき 上に凸 となるから場合分けする。 (別解) 両辺をαで割っ て求めることもできる。 (ア) α > 0 のとき (x-2)(x-3) < 0 よって 2<x<3 (イ) α <0 のとき (2) v2 -ax-2a < 0 (x-2)(x-3)>0 よってx<2,3<x 172 題 97 東京書籍

未解決 回答数: 1