学年

教科

質問の種類

数学 高校生

数A 確率 下の写真についてです。 この問題のイ、全くわかりません。なんの目的でk+1とkを比較しようとしているのかも、何をしようとしているのかも理解できませんでした。 解説していただきたいです。よろしくお願いします

重要 例題 56 独立な試行の確率の最大 383 00000 さいころを続けて100回投げるとき 1の目がちょうどk回 (0≦k≦100) 出る確 率は 100 Ck ×・ 6100 でありこの確率が最大になるのはk=1のときである [慶応大) 基本49 指針▷ (ア) 求める確率を とする。 1の目が回出るということは,他の目が100k回出ると いうことである。 反復試行の確率の公式に当てはめればよい。 (イ) +1 差をとることが多い。しか の大小を比較する。大小の比較をするときは, が多く出てくることから、 比 し確率は負の値をとらないことと "Cr= Ph+1 pk n! r!(n-r)! をとり、1との大小を比べるとよい。 を使うため、式の中に累乗や階乗 11 CHART 確率の大小比較 比 pk+1 をとり、1との大小を比べる pk 章 8 独立な試行・反復試行の確率 2章 解答 さいころを100回投げるとき 1の目がちょうどk回出る確率 5 100-k 75100- とすると =100CkX 反復試行の確率。 6100 Pk+1 100!5% k!(100-k)! 5:00(+1) ここで pk (k+1)! (99-k)! 100! 5100-k 1+1=100C (+) X 6100 100-k pakの代わりに 5(k+1) k+1 <1 とすると 100-k k+1とする。 また、 <1 pk 5(k+1) 両辺に 5(k+1) [>0] を掛けて 100-k<5(k+1) 95 これを解くと k> ·=15.8··· 59 500 === (k+1)!=(k+1) k! に注意。 両辺に正の数を掛けるから, 不等号の向きは変わらない。 6 よって, k≧16のとき pk>Pk+1 1 pk+11とすると kは 0≦k≦100 を満たす整 数である。 100-k>5(k+1) pk 95 これを解くと k<=15.8... Daの大きさを棒で表すと |最大 よって, 0≦k≦15のとき D<Dk+1 増加 したがって Po<i<<P15<P16, P16>1>>P100 2012 100 k よって, か が最大になるのはk= 16のときである。 17 99

回答募集中 回答数: 0
数学 高校生

数Ⅲ微分 丸で囲った sinxは単調増加であるから、という条件はどういう意味なのでしょうか? 無くてもtで置き換えてるのでできる気がするのですが…… 14番です。お願いします。

6 Check! Step Up 396 末 第6章 微分法の応用 (1)f'(x) =2me" sin(xx) +2eπCOS (πx) =2ne™x{sin(x)+cos(x)} *sin(x++) =2√2 resinx+ -1<x<1 £9,-*<**+*<z したがって、f'(x) = 0 とすると, x+4=0. π 1 より。 x=- 4'4 f(x) の増減表は次のようになる。 x -1... ..... 1 4 0 + 0 f'(x) f(x) よって 大値 ed(x=22) 極小値 -√/2e-f(x=-1/2) (2) f'(x)=1e-x+(x+1) (−2ax)e-ax2 =(-2ax2-2ax+1)e-axs f'(x) = 0 とすると, e-x2 = 0 より 2ax²-2ax+1=0 2ax2+2ax-1=0 ...... ① f(x) が極値をもつための条件は、 ①が解をもち, その 解の前後で ① の左辺の符号が変化することである. a=0 のとき, -1=0 となり不適 したがって, a=0 | 積の微分 A (e**)'=e** (xx)'= nex {sin(x)}'=cos(x)(x) 三角関数の合成 COS(x) sin(x+4)=0 -√2e- 積の微分 1 <f'(x)=0 の両辺を e-ax で 割る. 第6章 微分法の応用 映画 397 Step Up 1 <x<1/2で異なる2つの実数解をもち、その直後で(x)の 考え方> (1) f'(x) =0 が 符号が変わるようなαの値の範囲を考える. の値の範囲を求める. (2) f'(x)=0 が 0<x<πで解をもち, その前後でf'(x)の符号が変わるような (1) f(x)=2cos2x-asinx =2(1-2sin'x) -asinx =-4sin'x-asinx+2 f'(x) =0 とすると, より, -4sin x-asinx+2=0 4sinx+asinx-2=0 ...... ① f(x) が極大値と極小値をもつための条件は,①が 一覧<x< に異なる2つの実数解をもち,その解の 前後で①の左辺の符号がそれぞれ正から負,負から正に 変化することである. sinx=t とおくと, であり,①は, 4t2+at-2=0 <x<1のとき,-1<t<1 2 <x<1においてsinxは単調増加であるから ②1<<1 に異なる2つの実数解をもつとき、 f(x) が極大値と極小値をもつ. g(t)=4t+at-2 とおくと, g(0)=-2<0 より, である. g(-1)>0 かつ g (1) > 0 g(-1)=4-a-2>0より, g(1)=4+α-2>0より, a<2 a>-2 2倍角の公式 cos20=1-2sin' では調査 -1 \0 6 であるから, f(x) が極値をもつための条件は, xについ よって, -2<a<2 ての2次方程式 ①が異なる2つの実数解をもつことであ る. f'(x)≧0 重解をもつときは, または f'(x) 0 となり極値 をもたない. (2) f(x)==sinx•sinx−(a+cosx)cost sin'x sin'x ①の判別式をDとすると,0 すなわち, a²+2a>0 a<-2,0<a よって, 求めるαの値の範囲は, a<-2, 0<a t 14 (1) 関数f(x) =sin2x+acosx (-2<x<2) が極大値と極小値をもつように定数a の値の範囲を定めよ. (2)関数f(x)=+COSX (0<x<z) が極値をもつように定数a(a≠0) の値の範囲を sinx 定め,そのときの極値を求めよ. -sin'x-acosx-cos' x acosx+1 sinx f'(x)=0 とすると, acosx+1=0 ...... ① f(x) が極値をもつための条件は,① が 0<x<πに 解をもち,その前後で ① の左辺の符号が変化することで ある. COSx=t とおくと, 0<x<πのとき, -1<t<1で あり,① は, at+1=0 ・・・② 0<x<πにおいて、 COS-xは単調減少であるから ② が1<t<1に解をもつとき,f(x)が極値をもつ. α≠0 より t=-- (i) a>0 のとき 1 a -1<--<0であるから, a -2 商の微分 (分母)=sin'x>0より,分~ 子についてだけ考えればよい. a>1 <a>0より, -a <-1 a>1

回答募集中 回答数: 0