学年

教科

質問の種類

数学 高校生

2021②-5 ①蛍光ペンを引いたところの問題でいうところのカキクなのですが、前に出てるaをそのまま2乗してはいけないのですか?答えにはaの2乗=a➕1とあり、確かに途中でウエオのところでaはすでに答えが与えられてるけど、それを2乗したら出てくるはくるのですが、なぜここで... 続きを読む

44 日 第3問~第5問は、いずれか2問を選択し、解答しなさい。 第5問 (選択問題(配点 20 さま 1辺の長さが1の正五角形の対角線の長さをαとする。 (1) 1辺の長さが1の正五角形 OA,B,CiA2 を考える。 第1日程 数学Ⅱ・数学B 45 (2) 下の図のような, 1辺の長さが1の正十二面体を考える。 正十二面体とは, どの面もすべて合同な正五角形であり. どの頂点にも三つの面が集まっている へこみのない多面体のことである。 a A2 C₁ A1 B1 10. 1+30 B2 [C A: 0 B D 110 とされる。キリによ! すべて 4点( ZA,CB=31 CiA1A2 アイとなることから,AA2と BC」 は平行である。ゆえに 面 OABICA2に着目する。 OA」 と A2 B1 が平行であることから OB1=0A2+A2B1=0A2+ OA₁ AA= ウ BIC である。 また に であるから 1 BC1= 1 ウ AA2 T (OA2-OA) ウ で絞り立てみ 正 |OA2OA1|2|AA2|2 正方形ではな =80-80 + a ク また, OAとABIは平行で,さらに, OA 2 と AC も平行であることから に注意するとはない る。 BICI=B1A2+ A20+ OA] + AC1 ウ =- OA-OA2+OA」 + OA2 I - オ OA2- OA₁ 0=ab+adah となる。 したがって 1 I ウ ケ コ OA OA2= + でない を得る。 (数学Ⅱ・数学B第5問は次ページに続 補足説明 ただし、 サ は,文字 αを用いない形で答えること を得る。 (数学Ⅱ・数学B第5問は次ページに続く。) が成り立つ。0に注意してこれを解くと,a= 449-

解決済み 回答数: 1
数学 高校生

この問題の(3)の除外点が (0,2)になる理由がどうしてもわからないので教えてください!

第3章 基礎問 76 第3章 図形と式 47 軌跡(V) mを実数とする.ry 平面上の2直線 mx-y=0① ついて、次の問いに答えよ。 ことはないので(), (0, 2) は含まれない よって、求める軌跡は x+my-2m-20 ・・・・・ 円 (x-1)^(-1)=2から. 点 (0.2) を除いたもの. 注 一般に、mz+n型直線は、軸と平行な直線は表せません。 それは、の頃に文字がないので,m, nにどんな数値を代入しても (1) ①,②はmの値にかかわらず,それぞれ定点 A,Bを A. Bの座標を求めよ。 (2) ① ②は直交することを示せ、 ( ①②の交点の軌跡を求めよ。 (1) 「mの値にかかわらず」 とあるので,「m について整理 についての恒等式と考えます。 (37) (2) ② が 「y」 の形にできません. (36) (3) ①②の交点の座標を求めて、 45 のマネをするとかなり大変です。 (90) したがって,(1),(2)を利用することを考えます。このと Qを忘れてはいけません。 答 (1)の値にかかわらずmr-y=0 が成りたつとき,エーリ=0 A(0, 0). ②より(y-2)+(x-2)=0 だから B(2.2) (2)1+(-1)=0 だから,bile mについて整理 36 が必ず残って、kの形にできないからです。逆に,の頭には文 がついているので,m=0 を代入すれば,y=nという形にでき, 軸に平行な直線を表すことができます。 45の要領で①②の交点を求めてみると. 2(1+m) 1+m 2m(1+m) y= 1+m となり、まともにmを消去しようとすると容易ではなく、除外点を見つける こともタイヘンです。 もしも誘導がなければ次のような解答ができます。 こ れが普通の解答です。 で割りたいの 0 のとき,① より m= y I でイキ0,0 ②に代入して+ y2-24-2=0 で場合分け I I (x-1)+(y-1)=2 +y2-2y-2x=0 次に=0 のとき, ①より,v=0 これを②に代入すると,m=-1となり実数が存在するので、 点 (0, 0) は適する。 以上のことより, ① ②の交点の軌跡は円 (x-1)+(y-1)=2 から点 (0.2) を除いたもの. ●ポイント 定点を通る2直線が直交しているとき,その交点は, ある円周上にある. その際. 除外点に注意する ①.②は直交する. ゆ (3) da+bb2=0 (3) (1) (2)より ① ② の交点をPとすると ① 1 ② より, ∠APB-90° 314 よって、円周角と中心角の関係よりPは2点A, Bを直径の両端とする円周上にある. この円の中 演習問題 47 心は ABの中点で(1.1) また,AB=2√2 より 半径は√2 よって、 (x-1)2+(y-1)^2 ここで,①はy軸と一致することはなく、②は直線y=2と一致する tを実数とする. ry平面上の2直線:tr-y=t, mx+ty=2t+1 について. 次の問いに答えよ. (1)の値にかかわらず, 4mはそれぞれ, 定点A,Bを通る. A,Bの座標を求めよ. (2) lm の交点Pの軌跡を求めよ.

解決済み 回答数: 1