学年

教科

質問の種類

数学 高校生

(2)の答えの上から4行目の−1以上、1以下なのは理解できるんですけど常に〜の部分を書く必要性がわかりません!3行目の(cosθ−2)の2が1以上なので不適だと考えて、(2cosθ−1)しか記述しなかったんですけど… それでも大丈夫ですかね?教えてください🙇‍♀️

235 基本 例題 145 三角方程式・不等式の解法 (2) •sin20+cos'0=1000 002のとき,次の方程式、不等式を解け。) (1) 2cos20+sin0-1=0| (2) 2 sin²0+5 cos 0-4>0 基本 142 143 重要 148 複数の種類の三角関数を含む式は、まず1種類の三角関数で表す。 1 (1) cos20=1-sin'0, (2) sin'0=1-cos'0 を代入。 ②2 (1) は sin0 だけ (2) は cose だけの式になる。 このとき, -1≦sin 0≦1, -1≦cos 0≦1に要注意! ③ [2] で導いた式から, (1): sin0 の値 (2): cose の値の範囲を求め, それに対応する 6 の値の値の範囲を求める。 CHART sincos の変身自在に sin 20+cos20=1 (1) 方程式から 答 整理すると ゆえに よって 2 (1-sin)+sin0-1=0 +02034cos20=1-sin20 2sin20-sin0-1=0 140 (sin0-1)(2sin0+1)= 0 sin0=1, 00 <2であるから 1 2 >020 > 1 <=8803 π sin0=1より 0= 2 sin0=- 1/2より したがって,解は 7 9=1, 11 0= π, π 7 π 0=11, 1x, 11 x T 6 (2) 不等式から 2 (1-cos20)+5cos0-4>0 整理すると 2cos20-5 cos0+2<0 よって (cos 0-2) (2cos0-1) <0 7 12 0≦0 <2πのとき,-1≦cos≦1であるから, 常に COS 0-2 < 0 である。 ゆえに 2cos 0-1>0 すなわち Cos> πC 5 これを解いて 0≤0< <0 <<2π 3'3 -1 12 1 x k 11 16 4章 23 三角関数の応用 sin20=1-cos20 中央上 中央と 1 5 1083 -1 55 0=0 -1 \312 /1 x

解決済み 回答数: 1
数学 高校生

ここで=を含まないのはなぜですか?

重要 例題 148 三角方程式の解の存在条件 0 の方程式 sino+acos0-2a-1=0を満たす 0 があるような定数a 00000 この値の範 基本145 囲を求めよ。 指針 まず 1種類の三角関数で表す →→ cos0=xとおくと, -1≦x≦1 で、与式は 解答 (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0 ① よって、 求める条件は, 2次方程式 ① が -1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小 グラフ利用 D, 軸, f(k)に着目 COS=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a1= 0 すなわち x2-ax+2a=0... ① この左辺 f(x) とすると, 求める条件は方程式 f(x)=0 1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 THE 検討 x2ax+2a=0をαにつ いて整理すると x=a(x-2) (0-200-J)-よって, 放物線y=xと これは, 放物線y=f(x) とx軸の共有点について 次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x)が-1<x<1の範囲で, x軸と異な る2点で交わる, または接する。 このための条件は、 ① の判別式をDとすると D≧0 a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 直線y=a(x-2) の共有 点のx座標が -1≦x≦1の範囲にある 条件を考えてもよい。 解 答編 p.147 を参照。 [1]\ YA よって a≤0, 8≤a ...... 中 <a 軸x=1/2について 1</12 <1から -2<a<2… ③ + 20 1 f(-1)=1+3a>0から a> - 11/13 ④ 3 f(1)=1+α>0 から α>-1 [2] y4 1 ②~⑤の共通範囲を求めて <a≤0 3 + -1 [2] 放物線y=f(x) が-1<x<1の範囲で,x軸とただ 1 1点で交わり,他の1点はx <-1, 1<xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1) (a+1) <0 よって 1 -1<a<- [3] 放物線y=f(x) がx軸とx=-1またはx=1で交わ [=(0) 3 る。 f(-1) = 0 または f(1) = 0 から a=- 1 または α=-1 3 [1] [2] [3] を合わせて -1≤a≤0 ya 00: 1. 100 [参考] [2] [3] をまとめて,f(-1)f(1) ≧0としてもよい。 練習 0 の方程式 2cos20+2ksin0+k-5=0を満たすのがあるような定数々の値の ④ 148 囲を求めよ。

未解決 回答数: 0
数学 高校生

(1)の解説部分で赤波線の所の意味が分かりません😭教えて欲しいです🙏

重要 例題 149 三角方程式の解の個数 2321 00000 は定数とする。 0 に関する方程式 sin20-cos0+a=0について,次の問いに 答えよ。ただし,0≦0<2πとする。 ① この方程式が解をもつためのαの条件を求めよ。 ↓ (2)この方程式の解の個数をαの値の範囲によって調べよ。 も 指針 cos0=xとおいて, 方程式を整理すると x²+x-1-a=0(-1≦x≦1) 前ページと同じように考えてもよいが,処理が煩雑に感じられる。 そこで, 重要 148 83 ①定数αの入った方程式 f(x) =αの形に直してから処理に従い,定数α を右辺に移項したx2+x-1=αの形で扱うと、関数 y=x'+x-1(-1≦x≦1) のグラ フと直線 y=α の共有点の問題に帰着できる。 → 直線 y=α を平行移動して, グラフとの共有点を調べる。 なお, (2) では x=11であるxに対して0はそれぞれ1個, が成り立つ! 1<x<1であるxに対して0は2個あることに注意する。 cos0=x とおくと,0≦02から 解答 方程式は (1-x2)-x+α=0 右 したがって x2+x-1=0000 直でない 882 a+s この解法の特長は、放物線を aa+固定して考えることができ るところにある。 f(x)=x2+x-1 とすると ƒ(x) = (x + 1)²=-=-15/14 2 よ グラフをかくため基本形に。 (1)求める条件は,xの範囲で、y=f(x) のグラフと直線y=aが共有点をもつ条件と同じ 公 である。 よって, 右の図から 5 - ≤a≤1 [6] \y=f(x) ybei y=a01 0 4 [51

解決済み 回答数: 1
数学 高校生

cosθ-1=<0からどうしてcosθ-1=0になったのでしょうか?

基本 例題 155 三角方程式・不等式の解法 (3) ・・・ 倍角の公式 002のとき、次の方程式、不等式を解け。 (1)sin20=coso 指針 000 (2) cos 20-3cos 0+2≧0 基本 154 ① 2倍角の公式sin20=2sinOcos0, cos20=1-2sin'0=2cos20-1 を用いて 関数の種類と角を 0 に統一する。 ② 因数分解して,(1)ならAB=0, (2)ならAB0 の形に変形する。 ③-1≦in0≦1, -1≦cos01に注意して、方程式・不等式を解く。 CHART 0と20が混在した式 倍角の公式で角を統一する (1) 方程式から 2sincos0=coso 解答 ゆえに cos (2sin0-1)=0 YA 1 よって cos0=0, sin0= 1 2 2 002 であるから -1 0 S /1x COS0=0より π 3 0= π 2'2 Onia -1 sin=- π 5 0= π 2 6' 6 sin20=2sin Aco 種類の統一はでき いが,積=0の形 るので, 解決でき AB=0>>> A0 またはB= sin0= cos00程度は、 なくても導ける の参者 2 π 以上から,解は π 5 0=. π、 (2)不等式から 整理すると ゆえに 0≦0<2では,cos 0-1≦0 であるから 6' 2' 6 2cos20-1-3cos0+2≧0 2cos20-3cos0+1≧0 (cos 0-1) (2 cos 0-1)≥0 YA 1 32 3 cos20=2cos'6 cos0-1=0, 2cos0-1≦0 1 5 3T よって cos0=1, cos0≦ 2 ON π 3 11x [cos0-1=0を いように注意。 なお、図は co したがって,解は 2 A の参考図。 3 5 0=0, 1 ≤0≤ x 2021 π 練習 0≦02のとき,次の方程式、不等式を解け。 ②155 (1) sin 20-√2 sin0=0 (3) cos 20-sin 0≤0 (2) cos 20+cos 0+1=0 とおくと p.2

解決済み 回答数: 1