学年

教科

質問の種類

数学 高校生

(4)からまったくわかりません... 解説お願いします

Think 例題 153 総合問題 右の図は,生徒20人に行った 整理と分析 301 **** 点で図形の得点が5点である生徒の 人数は2人である. の結果をまとめたものである. 関数 の得点xを横軸に,図形の得点yを 縦軸にとっている.図の中の数値は xyの値の組に対応する人数を表し ている。 数と図形のテスト(ともに10点満点) 10 9 8 1 7 1 11 6 1 11 y 5 121 4 たとえば、関数の得点が7 3 1 22 1 2 2 1 各生徒の得点について, x+y の最大値と, x-yの最大値 を求めよ. 0 01234 5 6 7 8 9 10 X が S 5. (2)図をもとに,次の表を完成させよ.また,各テストの得点の平均値 を求めよ. 点(点) 0 1 2 3 4 5 6 7 8 9 10 2435 10 関数(人) 0002 図形(人) 012335231 (3)(2)の表を使って各テストの標準偏差を求めると, 関数は2.8点 図形は3.6点, 関数と図形の得点の共分散は2.55 であった. 関 数と図形の得点の相関係数の値を四捨五入して小数第2位まで求 めよ.ただし,√7=2.646 とする.A0.80 右の表は、別の5人の生徒 A, B, 5人の生徒 ABCDE C,D,Eに同じ問題のテストを行 った結果である. 5人の関数と図 形の得点の平均値は, それぞれ 20 165 関数の得点 7 4 6 9 4 6 図形の得点 5 4 5 6 5 人の得点の平均値と同じであった.20人にこの5人を加えた合計 25人の生徒に関する関数と図形の得点の相関係数Rの値を小数第 2位まで求めよ. (5)これらのテストの結果について、次の①~③は正しいといえるか、 ① 生徒 25人の得点について、関数と図形の平均値からの散らば り具合は同じである. ② 生徒 20人の関数と図形の得点の正の相関はやや強いが,A~ Eの5人が加わると正の相関は少し弱まる. ③ 生徒 25人の図形の得点が一律に1点上がれば,25人の関数と 図形の得点の相関係数の値はより大きくなる. 第5章

回答募集中 回答数: 0
数学 高校生

この式がなんでこうなるか分かりません!! 教えてください🙇‍♀️

109 導関数の定義 びばん (1)(x)のx=1における微分係数が存在するとき,lim (1), f'(1) で表せ. f(x)-x³f(1) (2)f(x)=x2 のとき,定義に基づいて導関数 f(x) を求めよ. x-1 を ( 明治大 / 佐賀大) (解答 f(x)-xf(1) (1) lim- x→1 x-1 = =lim f(x)-f(1)xf(1)+f(1) | f(x)=(1) x³-1. f(1) = lim →1 x-1 =lim- x→1 f(1) f (1) は打ち消される |f(x) = f(1) = (x-1)(x²+x+1). (1) x-1 f(x)-f(1) -lim(x2+x+1).f(1) x-1 x→1 =f'(1)-(1+1+1)f(1) =f'(1)-3f(1) このときを x+h とすると, f(x+h)=(x+h)2 である (2) f(x)=x2 のとき, 000023 f(x+h)-f(x) (x+h)2-x2 2xh+h2 f'(x)=lim =lim -=lim -=lim(2x+h)=2x ん→0 h h→0 h h→0 h h→0 解説講義) f(b)-f(a) xがαから6まで変化するときの平均変化率は であり、 微分係数 f(a)はこの b-a f'(1)=lim 式でb を αに近づけたときの極限で,f'(a)=lim- f(b)-f(1) f(b)-f(a) b-a b-a ・・・① である. ここでα=1にすると, b 1 b-1 であり, b をxに書きかえるとf' (1)=lim- *→1 x-1 f(x)-f(1) となる.(1)では これを用いた.なお, 微分係数の定義である① は, b=a+hと置きかえて f(a)= lim- f(a+h)-f(a)...② と書かれることも多い h→0 h ②でαをxに書きかえると導関数 f(x) の定義になる.つまり, f'(x)=limf(x+h)-f(x) である. h→0 h (2)では「定義に基づいて f'(x) を求めよ」と要求されているから、この定義を用いて計算 していないものは0点である.ただし, 微分する (導関数を求める)ときに、毎回このような 計算をしていたら大変である.そこで, n=1, 2, 3, に対して, f(x)=x" のとき,f(x)=x1 ということを「公式」として,単に微分するだけのときは,「f(x)=x2 のとき,f(x)=2x」と アッサリやればよい. 文系 数学の必勝ポイント・ 導関数f'(x)の定義 関数 f(x) に対して,導関数f(x) == lim f(x+h)-f(x) である h

未解決 回答数: 1