学年

教科

質問の種類

数学 高校生

112.1 2枚目:記述はこれでも問題ないですか? 3枚目:l+1が3の倍数であることを示さなくても良い理由は こう(赤ペンで書いているところ)だからですか??

480 00000 基本 例題112 互いに素に関する証明問題 (1) (1) nは自然数とする。 n+3は6の倍数であり,n+1は8の倍数であるとき、 n+9 は 24の倍数であることを証明せよ。 (2) 任意の自然数nに対して, 連続する2つの自然数nとn+1は互いに素であ 重要 114」 ることを証明せよ。 指針 (1) 次のことを利用して証明する。 α, b, kは整数とするとき p.476 基本事項 ②. 基本 111 a,bは互いに素で, akbの倍数であるならば, kは6の倍数である。 (2) +1は互いに素⇔nとn+1の最大公約数は 1 nとn+1の最大公約数をgとすると n=ga, n+1=gb (a,bは互いに素) この2つの式からnを消去してg=1 を導き出す。 ポイントは A,Bが自然数のとき, AB=1 ならば A=B=1 [CHART CAUCA a,bは ①1 ak=blならばんは6の倍数,はαの倍数 互いに素 ②2 aとbの最大公約数は 1 解答 (1) n+3=6k, n+1=81(k, lは自然数) と表される。 n+9=(n+3)+6=6k+6=6(k+1) n+9=(n+1)+8=8l+8=8(+1) よって 6(k+1)=8(+1) すなわち 3(k+1)=4(+1) ! 3と4は互いに素であるから, k+1は4の倍数である。 したがって, k+1=4m (mは自然数) と表される。 ゆえに n+9=6(k+1)=6.4m=24m したがって, n +9は24の倍数である。 (2) とすると n+1の最大公約数をg n=ga, n+1=gb (a,bは互いに素である自然数) と表される。 n=ga を n +1=gbに代入すると ga+1=gb すなわち g (b-α)=1小 g, a,b は自然数で, n <n+1 より 6-α>0であるから g=1 よって, nとn+1の最大公約数は1であるから, nとn+1 は互いに素である。 注意 (2) の内容に関連した内容を, 次ページの参考で扱っている。 練習 ②112 +12を35で割った余りを求めよ。 1+1は3の倍数 このとき, (2)を自然数とするとき 2n-1と2は である。 したがって, l+1=3m と表されるから、 n+9=8.3m=24m としてもよい。 (1) nは自然数とする。 n +5 は 7の倍数であり, n +7は5の倍数であるとき, ◄n=ga, n+1=gb 積が1となる自然数は1だ けである。 基 指針 C L a- と (2 a こ t 0 C

回答募集中 回答数: 0
数学 高校生

整数 (2)の(ィ)はこの解き方(写真二枚目)だとダメですか? 追記 辺々をかける、というのも慣れません。気軽に辺辺をかけても大丈夫なんでしょうか。

以 練習 (1) 2つの整数 46 に対して、a=bk となる整数kが存在するとき, blaと書くことにする。 ② 103 このとき, a20 かつ2|αであるような整数を求めよ。 (2) 次のことを証明せよ。 ただし, a,b,c,d は整数とする。 (ア)a,bがともに4の倍数ならば、a²+bは8の倍数である。 (イ) acの倍数で dがbの約数ならば, cd は abの約数である。 (1) 20 から 20=ak ・・・ ①, 2la から a=21.... ②と なる整数k, lが存在する。 ② を①に代入して 20=21-k ゆえには10の約数であるから fot よって ..... l=±1, ±2 ±5, ±10 したがって a=±2, ±4 ±10, ±20 (2)(ア) α, 6-4の倍数であるから, 整数k, lを用いて a=-4k, b=-Al と表される。 *>7_a²+b²=(−4k)²+(-41)² = 16k²+16/² kl=10 この2式の辺々を掛けて ab=cdkl は整数であるから, cd は abの約数である。 iaは20の約数」かつ 「αは2の倍数」と考え、 20の約数のうち偶数で あるものを書き上げる方 針で進めてもよい。 ←②に1の値を代入。 が圏の倍数 ⇔=k =8(2k²+212) 2k²+2L² は整数であるから +62 は8の倍数である。 (イ) acの倍数で, dが6の約数であるから, 整数k, lを用←がの約数 いて a=ck, b=dl と表される。 =l (は整数) (kは整数)

回答募集中 回答数: 0