学年

教科

質問の種類

数学 高校生

左下の青チャートの問題の、(1)について質問があります。 もし右の写真のように放物線の開き具合が極端に大きかった場合、円と放物線の接し方として、チャートの解説の(1)の[1]のようなものは無いのかなと思うのですが、この時に重解を計算しようとするとどうなるのか、また、右の写真... 続きを読む

0000 重要 例題 104 放物線と円の共有点・接点 放物線 y=x2+α と円x+y2=9について,次のものを求めよ。 (1)この放物線と円が接するとき, 定数 αの値 (2)異なる4個の交点をもつような定数αの値の範囲 指針 放物線と円の共有点についても,これまで学習した方針 接点 重解 共有点 実数解 で考えればよい。 この問題では,xを消去して, yの2次方程式(y-a)+y'=9の 実数解,重解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1) 放物線と円が接するとは,円と放物線が共通の接線をも つことである。この問題では, 右の図のように, 2点で接する 場合と1点で接する場合がある。 (2) 放物線を上下に動かし、 (1) の結果も利用して条件を満たす αの値の範囲を見極める。 い点で \接する -34p 定まる。り 2点で接する xを消去すると 次方程式が導かれる。 3y3... =3 (2)の したが (g) 放物 る27 よっ なお、 [1] ya [2] 3- [3] (1) y=x2+α から x2=y-a 解答 これをx2+y2=9に代入して の実 1 f の解り よって y2+y-a-9=0 ...... ① ここで,x'+y2=9から (y-a)+y2=9 x2=9-20 ゆえに [2] a=-3 [1] 放物線と円が2点 [1] で接する場合 2次方程式 ① は②の 範囲にある重解をもつ。 よって、 ①の判別式を みが 重をもてばよい の交点 Dとすると D=0 D=12-4・1・(-a-9) 37 4 =4a+37 であるから 4a+37=0 すなわち 37 a=- 4 13 の異なる方の実 あり (×) 2~ ①から ゆえに、L のグラフと M2 [2] 放物線と円が1点で接する場合 以上から、 求めるαの値は 図から,点 (0,3), (0, -3) で接する場合で a=±3 このとき、①の解は y=-- となり、②を満たす。 2次方程式 py2+gy+r=00 重解は y=-1 a1- 37 4 頂点の座標に注意 ±3 (2) 放物線と円が4個の共有点をもつのは,右の図から, 37 放物線の頂点 (0, α)が,点(0, -3)から点(0, -3) を結ぶ線分上(端点を除く)にあるときである。 したがって _37 <a<-3 4 -3- 2=gly がリニ (2)200 なる2つ (2)

解決済み 回答数: 1
数学 高校生

(1) 判別式Dに=がついてるのはなんでですか? 2つの解と書いてあるから重解になるのは変な気がします。教えてください。

基本 例題 52 2次方程式の解の存在範囲 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく,他の解は3より小さい。 指針 2次方程式 x2-2px+p+2=0の2つの解をα,βとする。 (1)2つの解がともに1より大きい。 → α-1>0 かつβ-1>0 p.87 基本事項 2 (2)1つの解は3より大きく,他の解は3より小さい。 → α-3とβ-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式x2-2px+p+2=0の2つの解をα,βとし,判別解 2次関数 解答別式をDとする。 D =(-p)² - (p+2)= p²-p-2=(p+1)(p-2) 4 解と係数の関係から a+β=2p,aß=p+2 (1) α>1,β>1であるための条件は D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (β-1)>0 D≧0 から よって (p+1)(p-2)≥0 p-1,2≦p ...... (a-1)+(β-1)>0 すなわち α+β-2>0 から 2p-2>0 よって>1 ...... f(x)=x2-2px+p+2 のグラフを利用する。 (1) 2 =(p+1)(p-20, 軸について x=p>1, f(1)=3-p>0 から 2≦p<3 YA x=py=f(x) ② 3-p + a 1 B x (α-1)(-1)>0 すなわち αβ- (α+β) +1>0 から p+2-2p+1>0) 89 2 2章 解と係数の関係、解の存在範囲 よって <3 ③ たす 1- 求めるかの値の範囲は, 1, 2, (SF (0. (2)_f(3)=11-5p < 0 から 11 ③の共通範囲をとって 123 P 2≤p<3 の解は (2) α<β とすると, α <3 <βであるための条件は (a-3)(B-3)<0 題意から α =βはあり えない。 すなわち αβ-3(a+β)+9 <0 250 ゆえに p+2-3・2p+9 < 0 よって 11 p> 5

解決済み 回答数: 1
数学 高校生

(2)のとき判別式D<0という条件がないのはなぜですか?解説よろしくお願いします🙇‍♀️

の 基本 例題 52 2次方程式の解の存在範囲 ①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数」の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 2次方程式 x2-2px+p+2=0の2つの解をα,βとする。 指針 (1)2つの解がともに1より大きい。→α-1> 0 かつβ-1>0 p.87 基本事項 2 1つの解は3より大きく、他の解は3より小さい。 → α-3 と β-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα,βとし,判 | 別解 2次関数 解答別式をDとする。 f(x)=x2-2px+p+2 のグラフを利用する。 =(-p)²-(p+2)= p²-p-2=(p+1)(p-2) (+1)=2(1)=(+1)(p-2)≥0, 解と係数の関係から a+β=2p, aß=p+20pm=8 (1) α>1,ß>1であるための条件は+b) 軸について x=p>1, 38f(1)=3-p>0 D≧0 かつ (α-1)+(B-1)>0 かつ (α-1) (B-1)>0 から 2≦p<3 D≧0 から (p+1)(p-2)≥0 よって p≦-1, 2≦p ...... (α-1)+(β-1) > 0 すなわち α+β-20 から 2p-2>0. > + & p>1 ·· 23-p + Ca (α-1)(β-1)>0 すなわち aβ-(a+β)+1>0 から よって Op+2-2p+1>0) (E- <3 ...... ③ 求める』の値の範囲は, 1, ②, (ST ③ x=py=f(x) B x |(2) f(3)=11-5p<05 ③の共通範囲をとって1m1231 2≦p<3 (2)α<β とすると, α <3 <βであるための条件は (a-3)(β-3)<0 すなわち αβ-3(a+β)+9 <0 題意からα =βはあり えない。 1つの ゆえに p+2-3・2p+9 < 0 = $30 SIN よって p> b> 11

解決済み 回答数: 1
数学 高校生

線で引いたとこの意味がわかりません💦

数学II,数学B,数学C 第4問~第7問は,いずれか3問を選択し,解答しなさい。 以下, a= コ とし, nを自然数とする。 第7問 (選択問題) (配点 16 ) α を正の実数として, xの整式 を考える。 P(x)=x+ax²+ (4-α)x+5-2a P(-1)= ア であり 1-4+1+5-20 P(x)=(x+イ ){x²+(a- ウ r エ a+オ である。 3次方程式 P(x)=が虚数解をもつようなαの値の範囲は 0<a< カキ + 久 であり,このとき,P(x)=0 の虚数解をα,とし, 実数解を y とする。 '+1=0となるの値はα+Q=-atla2+2=(x+- 数学II, 数学 B 数学 C 太郎さんと花子さんは α" + " + y" の値について話をしている。 太郎:計算してみたけど,とは同じ値になっているね。 花子: とも同じ値になっているよ。 太郎:Bについてもαと同じように β^= B, B° = B2 が成り立つよ。このよう に考えていくと α + β" + y” の値がわかりそうだね。 03=B3 = サ であるから nが3の倍数のとき, α+B" = シ nが3の倍数でないとき, "+B"=スセ である。 したがって, α" + β" + y” のとり得る値は ソ 個である。 a= である。 -2 x=5-20 200 数学II,数学B,数学C 第7問は次ページに続く。) 1-172: (x+1) +2=(a+1)-215-20 ++(0-1x+15-2a) =a-20+1-10+4a= 2+205 x+1/2+ax²+(-a)x+5-2aa2+za-9 ナズナズ -(α-1) x² + (α-1)x (0-1)x+(4-0)x (5-2m)x-2a 15-2017+5-29 4xux-ax+x a²+20-9+1=0 02120-8:0 a= 2 +32 -2±6 D= (a-11-45-24 =u-zatP-20- =m²+60-19 x2+10-1)x+15-20) 2-1 | 2³± ળલ+(4-67245-29 (0-1)x²+(4-0)x 470-0 1719 92769-1950 5x. (5-20)x+5-2a 210-117²-10-112 -246-2-6 -6±136 a = Z 2 2 -25- -5 -8 2112 2156 A 57292

解決済み 回答数: 1
数学 高校生

ここの部分ってとこの単元で習う考え方ですか??

17:22 5/12 直交する直線であるから,その方程式は x²+1 この方程式は y= ---(-1)+ 8 x- 5 5 -8)+(y-8)-8" すなわち 4x+ 3 y- 16=0 中心の座標は 0 2 である. 2 である. [2] 心の座標は 8 8 で 8 である。 A. 半径を,とし,Cの中心を とすると (8-0)+(8-2)-10, =2+8=10 を正の定数とし, 祖母は地点0から秒速 メートル, 地点Aから妹は秒速20メートル, 花 子さんは地点Bから秒速40メートルで進む . 100mを長さの単位とし, 座標平面で 0 を 点 (0,0), A を点 (0, 3), B を点(50) として考 える. 祖母と妹の進む距離の比は1:2であるか ら、祖母と妹が点Pで出会うとき が成り立つので,C と C2 ① AP-2 OP 1:4 に内分する点をDとすると, が成り立つ。 ・0+1.8 4・2+1・8 1+4 8 16 5 5 1+4 4より, DはC と C2 の接点で 直線AB の傾きは 8-2 3 8-0 4 •B り Pの座標を (x,y) とおくと, AP-40Pよ (x-0)+(y-3)=4(x²+ y²). 整理すると x+y+2y-3=0 となるから, 点Pは円K x+y+2 y- 3=0 すなわち Cz 上にある. +(y+1)=2 同様に,祖母と花子さんが点Qで出会うとき BQ=40Q が成り立つから,Qの座標を (x, y) とおくと, BQ=160Q より (x-5)+(y-0)=16(x+y^. 整理すると x²+ y²+2x-3=0 となるから, 点Qは円K2 C₁ 2 5 C. と C の両方に接する直線は3 含む), そのうち, 傾きが最小で とすると, l は, D で直線AB と x+y+ -x- 0 3 3 すなわち < ++(4) -5- 無断転載複製禁止 Copyright Kawaijuku Educational Institution. kawai-juku.ac.jp 66

解決済み 回答数: 1