学年

教科

質問の種類

数学 高校生

うすくまるでかこっているところが問題によって下記かがちがくてよくわかりません。教えてください。

なったと判断できる。 28 この地域のイノシシが寄生虫Aに感染している割 よって、 区間の幅が狭いのは、信頼度95%の信頼 区間である。 合を シシの感染個体の比率は 198 396 対立仮説は すると、帰無仮説は0.55, 0.55 である。 また、 今回の調査で捕獲したイノ = 0.5 である。 1 (2) (1)より, 信頼区間の両端は 0.04 12.56 1.96 =12.56±0.01568 √25 □2 帰無仮説が正しいとすると, 標本における感染個体 0.55.0.45 の比率がの分布は正規分布 N (0.55, と 396 見なせる。 よって P(-0.55 ≥ 0.5-0.551) よって, 信頼度 95%の信頼区間は 12.54432 d≦12.57568 小数第3位を四捨五入すると, 12.54mm以上 12.58mm 以下となる。 (3) 信頼区間の幅を0.008mm以下にするから,計 測回数をnとすると, (1) より 0.55 0.05 =PI 0.55.0.45 0.55-0.45 V 396 396 =P(Z|≧2) =2P(Z≧2) =0.04550 <0.05 したがって, = 0.55 という帰無仮説は棄却される。 すなわち、この地域のイノシシが寄生虫 Aに感染し ている割合は先行調査と異なると判断できる。 Let's Challenge 2 1_(1) 標本平均の平均は母平均に等しいから E(X) = 400 標本の大きさが36であるから, 標本平均の標準 偏差は 70 0.04 2.1.96. 0.008 よって n≧384.16 ゆえに、少なくとも385回計測すればよい。 布は,正規分布 N (0, と見せる。 3 (1) 帰無仮説は m = 0, 対立仮説は m≠0 である。 (2) 帰無仮説が正しいとすると, 標本における重さ の平均から表示されている値を引いた値m' の分 2.52 225 よって P(m′-01≧ 0.32) P ( \m\ 0.32 2.5 2.5 225 SHP225 =P(Z≧1.92) =2P(Z≧1.92) 0.05486>0.05 したがって, m = 0 という帰無仮説は棄却されな いにで (1)

回答募集中 回答数: 0
数学 高校生

p,qに置き換えることをせずに計算したのですが、ここまで解いてaの式に変形するやり方が分かりません💦 どうしたらいいですか?

150 基本 例題88 曲線の接線の長さに関する証明問題 00000 曲線x+y=(a>0) 上の点Pにおける接線がx軸, y軸と交わる点を それぞれA, B とするとき, 線分ABの長さはPの位置に関係なく一定である ことを示せ。 ただし、Pは座標軸上にないものとする。 [類 岐阜大] 基本 83 指針 まず 曲線の対称性に注目 すると (p.178 参照), 点P は第1象限にある,つまり P(s,t) (s>0, t>0) としてよい。 p.145 基本例題 83 (1) と同様にして点Pにおける 接線の方程式を求め, 点 A, B の座標を求める。 線分ABの長さがPの位置に関係な 一定であることを示すには, AB2が定数 (s, tに無関係な式) で表されることを示す。 TRAYA 3√√x² + 3y² = 3√ √ a² (a>0) ① とする。 a 解答 ① は x を -x に, y を -y におき換えても成り立つから, 曲線① はx軸,y軸,原点に関して対称である。 よって, 点Pは第1象限の点としてよいから, P(s, t) (s>0, t>0) とする。 B P 9xs -a 0 a x A ゆるカーの -a また, s = p, t=g(p>0g0) とおく。 ...... (*) x>0, y>0のとき,①の両辺を x について微分すると x=acos30 y=asin³0 (*) 累乗根の形では表記 2 + 33√x 2y' 33√y =0 (ゆえに y'=-31 y Vx よって、点P における接線の方程式は ① が紛れやすくなるので, 文字をおき換えるとよい。 '=(x)=1/2x1 y-t=-3 ± 4 (x−s) S ゆえに y=-(x-p³)+q³ p ② S ② で y=0 とすると x=p+pg: 3 よって 22 = (su+/t)=(v^)=α2 App+g2), 0) x=0 とするとy=pq+g B(0,g(p+g²)) AB2={p(p2+q^)}+{g(p2+q^)}2 2 =(p²+q²)(p²+q²)²=(p²+q²)³ ◄s=p³, t=q³ ◄0=-(x-p³)+q³ 両辺にを掛けて 0-gx+ap+pg° ゆえにx=p+pg2 D したがって, 線分ABの長さはαであり,一定である。 <a>0

未解決 回答数: 0