数学
高校生

p,qに置き換えることをせずに計算したのですが、ここまで解いてaの式に変形するやり方が分かりません💦
どうしたらいいですか?

150 基本 例題88 曲線の接線の長さに関する証明問題 00000 曲線x+y=(a>0) 上の点Pにおける接線がx軸, y軸と交わる点を それぞれA, B とするとき, 線分ABの長さはPの位置に関係なく一定である ことを示せ。 ただし、Pは座標軸上にないものとする。 [類 岐阜大] 基本 83 指針 まず 曲線の対称性に注目 すると (p.178 参照), 点P は第1象限にある,つまり P(s,t) (s>0, t>0) としてよい。 p.145 基本例題 83 (1) と同様にして点Pにおける 接線の方程式を求め, 点 A, B の座標を求める。 線分ABの長さがPの位置に関係な 一定であることを示すには, AB2が定数 (s, tに無関係な式) で表されることを示す。 TRAYA 3√√x² + 3y² = 3√ √ a² (a>0) ① とする。 a 解答 ① は x を -x に, y を -y におき換えても成り立つから, 曲線① はx軸,y軸,原点に関して対称である。 よって, 点Pは第1象限の点としてよいから, P(s, t) (s>0, t>0) とする。 B P 9xs -a 0 a x A ゆるカーの -a また, s = p, t=g(p>0g0) とおく。 ...... (*) x>0, y>0のとき,①の両辺を x について微分すると x=acos30 y=asin³0 (*) 累乗根の形では表記 2 + 33√x 2y' 33√y =0 (ゆえに y'=-31 y Vx よって、点P における接線の方程式は ① が紛れやすくなるので, 文字をおき換えるとよい。 '=(x)=1/2x1 y-t=-3 ± 4 (x−s) S ゆえに y=-(x-p³)+q³ p ② S ② で y=0 とすると x=p+pg: 3 よって 22 = (su+/t)=(v^)=α2 App+g2), 0) x=0 とするとy=pq+g B(0,g(p+g²)) AB2={p(p2+q^)}+{g(p2+q^)}2 2 =(p²+q²)(p²+q²)²=(p²+q²)³ ◄s=p³, t=q³ ◄0=-(x-p³)+q³ 両辺にを掛けて 0-gx+ap+pg° ゆえにx=p+pg2 D したがって, 線分ABの長さはαであり,一定である。 <a>0
+3=300・・・①とする ①はXを火にyを一にしても成り立つ よって①はx軸、y軸、原点に対して 対称的な図形である」 ①をXについて微分すると、 3+y= =0 y = - z√x p 20 Plx制とするとPにおける接線は yy=(x-2)となる。 y=0のとき、 x+ ・ 音声 - Al (21, +x, 0). X=0のとき、 yy X. (0) AB=+++ (+2(+ +++ 2

回答

まだ回答がありません。

疑問は解決しましたか?