学年

教科

質問の種類

数学 高校生

高一の数Aです。 259の1番が分かりません。 解説に赤線をひいているんですけどそこからわかりません。 なんで1と3と5が出てきたんでしょうか? 解説していただけるとありがたいです。

解答編 143 と表される。 -18-05 -08-0 =73, 6=51 とおく。 73-51-1 から 22=a-b 51-22-2から 22-7.3から ->0であるから 41-7x0 よって 7=b-(a-b)-2 41 x = 5.8・・・・・ 人 =-2a+36 1=(a-b)-(-2a+3b)・3 =7a-10b よって ① において, 2yは2の倍数であるから, 41-7x は2の倍数である x=1, 3, 5 は整数) って7-106=1から 73.7+51(-10)=1 ①から x=1のとき y=17 103x-75y=71014..... ① x=3のとき y=10, -17-11 13-1 4-31 8,y=-11 は,103x-75y=1の整数解の である。 x=5のとき y=3 0+++ よって、 103 (-8)-75-(-11)=1 したがって 別解 y) = (1, 17), (3,10), (53) (x, 7x+2y=41 ① 周辺に7を掛けると -17.3 103 (-56)-75-(-77)=7 ② よって ② から 103(x+56)-75(y+77)=0 x = 5, y=3は,①の整数解の1つである。 7.5+2・3=41) ...... 2 ①-② から 7(x-5)+2(y-3)=0 すなわち 103(x+56)=75(y+77) 3 すなわち 7(x-5)=-2(y-3) a +26 26)-3 103と75は互いに素であるから, x+56は75の 倍数である。 7と2は互いに素であるから, x-5は2の倍数 である。 =1 よって,kを整数として, x+56=75k と表され る。これを③に代入すると よって, kを整数として, x-5=2k と表される。 これを③に代入すると 103.75k=75(y+77) 7.2k=-2(y-3) 1 すなわち y+77=103k すなわち y-3=-7k したがって, 求める整数解は x=75k-56,y=103k-77(kは整数) 1103 75に互除法を用いると したがって, ① の整数解は x≧1, y≧1 とすると 数学A A問題、B問題 にとり (uh· (-561-15-(-471-7 103x-1587 1031-56)-150(-1)=7 103=(x+56)-15(8+7) (03 (X) = 11560 +11) (x+56) 156 (2+17)=1036 とりいっしょう1人の解でてこと 考えてか -2 76-7754-56 221036-177 あこ 整数とちゃうのん 259 次の等式を満たす自然数x、yの組をすべて求めよ。 x=2k+5,y=-7k+3 (kは整数) (1) 7x+2y=41 103=75・1+28 移項すると 75=282+19 28=19.1+9 19=9.2+1 28=103-751 移項すると 19=75-28-2 移項すると 928-19.1 移項すると 119-9.2 S 2k+5≥1, -7k+3≥1 Point この連立不等式を解くと -25k≤ これを満たす整数kは k=-2, -1, 0 TOR よって1=19-9.2=19-(28-191) ・2 D k=2のときx=1, y=17 1225261 はつことを利用して 28 = 41 19-3-28-2-(75-28-2)-3-28-2 k=1のとき x=3, y=10 2 =75-3-28-8-75-3-(103-75-1)-8 =103-(-8)-75-(-11)+ k=0のとき x= 5, y=3 したがって (x, y)=(1, 17), (3, 10), (5, 3) 3x=4(9-y)..... (2) 3x+4y=36から x>0であるから 4(9-y)>0 リーバー y<9 ① において, 3と4は互いに素であるから, 9-yは3の倍数である。 参考 2a103,675 とおく。 19=75-28.2から 28=103-75.1 から 28=a-b 9=28-19.1から 19=6-(4-6).24 En =-2a+3650) 9-(a-b)-(-2a+3b) よって -=3a-4b 00011(8) よって y=3,6 119-92から 1-(-2a+3b)-(3a-4b)-2 1+0+0=8a +116 よって, -8 +116=1から 1838 ①からy=3のとき x=8, y=6のとき x=4 別解 したがって (x, y)=(4, 6), (8, 3) 3x+4y=36 ...... x=12, y=0は、 ①の整数解の1つである。 3.12+40=36 よって ①-② から 3(x-12)+4y=0 ....... ② ...... ③ 103-(-8)-75-(-11)=1 259指針+0+α x0y>0であることを利用して,値を 絞る。 (1) 7x+2y=41 から 2y=41-7x すなわち 3(x-12)=-4y 3と4は互いに素であるから, x-12は4の倍数 である。 とりをすべてもとめてか いぬため x41 I ART 28 -1 fotba 7-1+2・(-3)=1です 7.1 4142-1-1241-41 7.(x-1)+2 7(/x-41) 92213 仕入して (+13) -2(+ g+x 4 == 41 HBNO6 7x+22=4から 284 17x 3 7027601 11x>0 まって x< 12 21112 28 182 a 41-7には2の存否 よって 41=2のから ( 2k+41 g== 2b+1 176 7123 F -74 +4 K = S

解決済み 回答数: 1
数学 高校生

(3)の問題で、なぜ217冊以上になるのかが分かりません 教えてください

問題1 翔子さんの学校では, 卒業の記念に文集を作成することにした。 A社とB社の文集作成にかかる代金を 調べ、下の表にまとめた。 代金は基本料金と製本料金と印刷料金の合計金額とする。 例えば, 60冊注文し た場合, A社では5000 + 50×60 +30×60=9800であるため、 代金は9800円となり, B社では10000 + 50×60 +30×50=14500であるため、 代金は14500円となる。このとき, 次の各問いに答えなさい。 ただし、消費 税は考えないものとする。 (24年度 【5】) 基本料金 A社 5000円 B社 10000円 製本料金 印刷料金 1冊50円 1冊30円 1冊30円 1冊50円 ただし, 51冊以上注文すると50冊を超えた冊数分の印刷料金は無料 (1) B社に100冊注文するときの代金を求めなさい。 (2) A社にx冊注文するときの代金を円とするとき,yをxの式で表しなさい。 (3) 翔子さんはA社とB社の文集作成にかかる代金を比較するため, 卒業文集をx冊注文するときの代金 (円)y をy円としてxとyの関係を右の図のようにグラフで表した。このグ ラフから, 150冊注文したときは, A社の方が安いが, 250冊注文した ときは、B社の方が安くなることが分かった。 何冊以上の卒業文集を 注文した場合にB社の方が安くなるか, 最も小さな整数で答えなさい。 問題の答え (1)16500円 (2)y=80x+5000 + (3) 217冊以上 B社 [A社] 10000円 5000 0 50 150 250x (車)

解決済み 回答数: 1
数学 高校生

【統計的な推測】 確率変数XiとXってなんなんですか? 何が違うんですか? 頭の悪い質問ですみません🙋

第5問 (選択問題) (配点 16) いてもよい。 問~第7問は,いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては, 必要に応じて 19ページの正規分布表を用 太郎さんと花子さんには,共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ,1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の の割合といわれているが, 2人は常々もっと少ない割合ではないかと感 そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め、 検討してみることにした。 1 割合は 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと 止めておくことにした。 数学Ⅱ・数学B 数学 C 2人は, どの包装についても確率で特別な味付けのお菓子が, 確率 1-で普 通のお菓子が入っているように0 <<1である定数を定められると仮定して p=1/3であることを帰無仮説 = 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 菓子が入っており,確率 で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数X を, 数 えが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X = X1+X2+ ・・・ + X 400 により確 率変数Xを定める。 X, Xの期待値 E (Xi), F(X)について E (X)= コ (i=1, 2, ..., 400) であり E (X)= シス である。 また, Xi, X の分散 V(X), 太郎 : 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 (個人の得点) (平均点)、 (標準偏差) ×10 で (X)について V(X)= セ ソタ (i=1, 2,.., 400) であり V(X)= チッ で 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ 96 る棄却域は ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ 以下または キク ある。 400 を十分に大きい数とみてXの確率分布は期待値 シス 標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準5%の両側検定により ト 。 以上と 400- なるね。 30 の解答群 69 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 4. 6 ⑩仮定を疑わせる結果となった 花子: 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ①仮定を疑わせる結果とはならなかった 0405 1.96×10+50 =-19,650 (数学Ⅱ・数学B 数学C第5問は次ページに続く。) 20.95 69,6 -16- (数学Ⅱ・数学B 数学C第5間は次ページに続く。) -17- 400

解決済み 回答数: 1
数学 高校生

この問題の(3)(4)はなぜ展開しなくていいのですか? それから展開せずに微分ってどうやるのか分かりやすく説明していただきたいです🙇🏻‍♀️‪‪´-

CHART & SOLUTION 積の形の関数の微分 p.278 STEP UP _2{(ax+b)"}=n(ax+b)-(ax+b)'=na(ax+6) "-1 {f(x)g(x)}=f'(x)g(x)+f(x)g'(x) homujo FRAME 寺に、2において α=1 である場合は{(x+b)"}'=n(x+6)^-1となり,計算が簡単になる。 | y'=(2x-1)(x+1)+(2x-1)(x+1) =2(x+1)+(2x-1)・1=4x+1 注意 (1) のように簡単な関 数ならば、 元の式を展開し '=(x2+2x+3)'(x-1)+(x2+2x+3)(x-1)', y=2x²+x-1から =(2x+2)(x-1)+(x²+2x+3)+1 ECTO- c =2x2-2+x2+2x+3=3x2+2x+1 '=3(2x-1)^(2x-1)' =3(2x-1)・2=6(2x-1)2 を結ぶ '={(x-2)2}'(x-3)+(x-2)(x-3 「程式を mil ったときの余り。 =2(x-2)(x-3)+(x-2)・1 =(x-2){2(x-3)+(x-2)} =(x-2)(3x-8) v=(x-2)^{(x-2)-1}=(x-2)3-(x-2)^から v=3(x-2)2-2(x-2)=(x-2){3(x-2)-2}-- y'=4x+1 と計算した方が スムーズ。 公式2を利用。 結果は展開しなくてよい。 ◆公式1を利用。 {(x+b)"}=n(x+b)"-1 (x+b)"の形にする {(x+b)"}=n(x+b)"-1 =(x-2)(3x-8) FORMATION 78の微分法の公式 af ((b)\-(+)\ A-E- (D) V {f(x)g(x)}'=f'(x)g(x)+f(x)g'(x) や {(ax+b)"}=na(ax+b)" -1 式を展開せずに微分できるというメリットがあるが,次のようなミスをしやすい 正確に押さえておこう。 (1) xy'=(2x-1)(x+1)、 ←同時には微分しない。 (3) xy'=3(2x-1)2 ←(2x-1)' の掛け忘れ。

解決済み 回答数: 2
数学 高校生

例題7のような問題で、項数を求める時にいちいち一般項を求めて末項を代入するというやり方でやっているのですが、このやり方ではいずれ通用しなくなりますか? +1するという方法も、その原理が分からないので+1しない場合を見分けられないです。 どなたか教えて頂きたいです🙇‍♂️

422 基本 例題 7 等差数列の利用 (倍数の和) 00000 100から200までの整数のうち, 次の数の和を求めよ。 (1)3で割って1余る数 (2)2または3の倍数 基本6 重要 9、 指針 等差数列の和として求める。 項数に注意。 初項 α 末項 のとき S=1/2n(a+1)を利用。 項数 n (1) 3 で割って1余る数は 3・33+1, 3・34 +1, ......, 3・66+1 3の 倍数 倍数 →初項100, 末項199, 項数 66-33+1=34 から上の公式を 利用。 (2) (2または3の倍数の和) =(2の倍数の和) + (3の倍数の和)-(2かつ3の倍数の和) 2 6 の倍数 -6の倍数 (1)100 解答 3・33+1,3・34 +1, までで, 3で割って1余る数は ......,366 +1 これは,初項が 3・33+ 1 = 100, 末項が3・66+1=199, 項数が 66-33+1 = 34 の等差数列であるから,その和 別解 (1) S =1/21n{2a+(n-1)d}を 初項 100, 公差 3, 項数 あるから =2 (S は ・・34(100+199)=5083 (2)100 から 200までの2の倍数は 1134(2・100+(34-1) =5083 2.50, 2.51, ..., 2.100 これは,初項100, 末頃 200, 項数 51 の等差数列であ初項 2・50=100, るから,その和は ・51(100+200)=7650 2 2000-12-(1-02) 100から200 までの3の倍数は 3.34, 3.35, ......, 3.66 末項 2・100=200, ① 項数 100-50+1=5 これは,初項102, 末頃 198, 項数 33の等差数列であ初項 3・34=102, 末項 3.66=198 るから,その和は33(102+198)=4950 ****** ② 項数 66-34+1=3 6.17, 6-18, ..., 6.33 100から200までの6の倍数は これは、初項102, 末項 198, 項数17の等差数列であ るから、その和は 17/100 2と3の最小公倍数

解決済み 回答数: 1
数学 高校生

273番です。なぜ解説の初めに10が出てくるのですか?

したがって、求める自然数の個数は 567-243=324 (個) 272指 たとえば、 (1) では1から240までの自然数のう 5の倍数,52の倍数,5の倍数の個数を求 である自 ない自然 める。 5の 1 2 3 4 5 6 10 25 ... 125 O 0 5 0 ··· 240 40 40 0 52 0 O 16 53 ○個数, 回った (1) は5 5の倍数の個数は, 240を5で割った商で 48 125,5625240である。 1から240までの自然数のうち、 52の倍数の個数は, 24052で割った商で9 5の倍数の個数は, 240 を53で割った商で 53の倍数の個数は1255で割った商で 1 よって、Nを素因数分解したときの素因数5の 個数は 25+5+1=31(個) また、素因数2の個数は明らかに素因数5の個 数より多い。 よって、求める0の個数は、素因数5の個数に 等しく 31個 102.5であるから,Nを素因数分解したと きの素因数5の個数を求める。 5=125,5625300である。 1から300までの自然数のうち 5の倍数の個数は、300を5で割った商で 60 52の倍数の個数は、300を52で割った商で12 53の倍数の個数は、300を5で割った商で 2 よって、Nを素因数分解したときの素因数5の 個数は 60+12+2=74 (個) また、素因数2の個数は明らかに素因数5の個 数より多い。 4100=( りは、 よって 2772 よっ した: 278 m また n-. n2_ n- 4- よって、 求める個数は あ ない 48+9+1=58 (個) (2)381,3243240である。 1から240までの自然数のうち、 等しく 74個 よって, 求める0の個数は, 素因数5の個数に n= n = よ 274 , の た 3の倍数の個数は,240を3で割った商で80 32の倍数の個数は,240 を32で割った商で26 33の倍数の個数は,240 を 33で割ったで 34 の倍数の個数は,240 を 34で割った商で 2 よって, 求める個数は 80 +26 +8 +2=116 (個) (3)27=128,2°=256>240 である。 1から240までの自然数のうち、 2の倍数の個数は, 240 を2で割った商で 120 22の倍数の個数は, 240を22で割った商で 60 ■指針■■■ (1)4を3で割った余りは1であるから, 4100 を 3で割った余りは11001を3で割った余りに 等しい。 (2) も同様。 14を3で割った余りは1である。 よって400を3で割った余りは, 1100 を3で割 った余りに等しい。 したがって, 求める余りは1 (2)165で割った余りは1である。 279 2, の 280 (2 よって, 1650 を5で割った余りは150を5割 った余りに等しい。 23の倍数の個数は, 240 を2で割った商で30 24の倍数の個数は, 240を24で割った商で 15 25の倍数の個数は 240を2で割った商で7 26 の倍数の個数は240を2で割った商で 3 27の倍数の個数は 240を2で割った商で 1 よって、 求める個数は 120 +60 +30 +15+7+3 + 1 = 236 (個) 273 (1) 1025 であるから,Nを素因数分解し たときの素因数5の個数を求める。 52=25,53125である。 1から125までの自然数のうち 5の倍数の個数は,125を5で割った商で25 52 の倍数の個数は、12552で割った商で5 したがって, 求める余りは 1 2751329 を4で割った余りは1である。 (1) よって, 340920 を4で割った余りは, 120 を4 で割った余りに等しい。 したがって, 求める余りは 1 ②23327 13で割った余りは1である。 3100 (33)33.3であるから,300を13で割った余 りは, 133.313で割った余りに等しい。 よって、求める余りは3 276100 を7で割った余りは, 4100 を7で割った 余りに等しい。 464を7で割った余りは1である。

解決済み 回答数: 1