学年

教科

質問の種類

数学 高校生

(3)の解説なんですけどα‬=2,β=-1は(1)からきてるのですか??あと、もしそうだった場合(1)には他にも答えがあったけど(3)では答えがひとつになってるのはどうしてですか?

基礎問 246 第9章 整数の性質 147 不定方程式 ax+by=c の解 x, y を整数とする. 方程式 2x-3y=7……① について,次の問いに答えよ。 (1) ①をみたす (x, y) の1組を見つけよ. (1)の (x, y) を (α, β) とするとき, 2α-3β=7②が成り たつ. ①,②を利用して,r-αは3の倍数で,y-β は2の倍数で あることを示せ. ①をみたす (x, y) をすべて求めよ. ①をみたす (x, y) に対して,r-y' の最小値とそのときの x, yの値を求めよ. ここで, 右辺は3の倍数だから, 2 (x-α) も3の倍数. 2と3は互いに素だから、αが3を因数にもうる よって、π-αは3の倍数。 247 整数を2つ以上の整数の緑で表したとき その1つ1つて回数という 同様に, 3(y-β)は2の倍数だから, y-βは2の倍数. (3) α=2,β=-1 だから, (2)より, x-2=3n, y+1=2n (n: 整数)と表せる. は含まいり 例の回 (x,y)=(3n+2, 2n-1) (n: 整数)より3net yantiはだめなのか ry2=(3n+2)-(2n-1) 2 =9n2+12n+4-(4m²-4n+1) =5n2+16n+3 =5n+ 49 5 nは整数だから,右のグラフより n=-2 のとき,すなわち, =(-4,-5) のとき,最小値-9 をとる . --1 2.3.4.6.12 has 17 |精講 ax+by=c(a,b,c は整数でαと6は互いに素)をみたす (x,y) を求めるとき,この基礎問の(1)~(3)の手順に従います。 (1) 未知数2つ, 式1つですから, (x, y) は1つに決まりません. すなわち、たくさんあるということです. その中から, 何でもいいから1組 見つけなさいということです. (2)-α やy-β をつくるためには,①②をつくるしかありません。 (3) π-αは3の倍数だから, x-α=3n (n: 整数) とおけます. もちろん, (a,B) は(1)で決めた値です. (4)(3),yを1変数nで表しているので,r-y' もnで表せます。 2x-3y=2・2-3・(-1)=7 解 答 (1) x=2,y=-1 とすると, よって, ①をみたす (x, y) の1組は (2,-1) ます。 注 このほかにも (x,y)=(5, 1), -1, -3) などがあります。 注 (4)は,①を x= 3y+7 2 として 5 21 + 49 = 5 (+21)² - 49 49 から最小値が - 5 とするのはまちがいです.それは,y は整数だからです。 また,y=-4とy=-5 のときを両方比べて y=-4 のとき,最小と考え るのもまちがいです. それは, が整数にならないからです. ポイント 不定方程式 ax + by = c(a,bは互いに素)をみたす整 数の組 (x, y) は、この方程式の解の1組 (α,B) をみ つけて aa+bβ=cをつくり, 定数項 c を消去する (2) 2x-3y=7....① 2a-3β=7 ......② ①-②より, 2(x-α)=3(y-β) 8018 演習問題 147 の最小値を求めよ. 方程式 3x4y=① をみたす整数 (x, y) について, r-gl 第9章

解決済み 回答数: 1
数学 高校生

(3)の問題です。なぜa=25/4を境に場合分けをするのかが解説を読んでもわかりません。どなたか教えていただけないでしょうか。

完答への 道のり AB 正三角形AQR ができる条件を場合に分けて © E が点 Q, C が点Rとなる確率を求めることができた。 正三角形AQR ができる確率を求めることができた。 白玉だけを取り出して正三角形AQR ができる条件をもれなく考えることができた。 F 白玉だけを取り出して正三角形AQRができる確率を求めることができた。 条件付き確率を求めることができた。 B4 図形と方程式 (40点) 座標平面上に円 C:x2+y2 = 25 と直線l: x+2y=10 があり、連立不等式x+2y10 fx2+y2 S25 A の表す領域をDとする。 (y≥0 (1)円Cと直線lの共有点の座標を求めよ。 また, 領域Dを図示せよ。 (2) (6,0)を通る直線の中で,円Cと y>0の範囲で接するような直線の方程式を求めよ。 (3)aは 6≦a≦10 を満たす実数とする。 点(x, y)が領域D内を動くときの最小 値を とする。 αの値で場合分けをして, mをαを用いて表せ。 x-a 配点 (1) 10点 (2) 12点 (3) 18点 解答 (1) C:x+y2 = 25 ① l VA l: x+2y=10 C ②より x=-2y+10 ②' ②'を①に代入して (10-2y) +y2=25 2-8y+15=0 (y-3)(y-5)=0 y=3,5 44 - 15 (4, 3) 0 5 x -5 円Cと直線lの共有点の座標は、 連立方程式①、②の実数解である。 解答ではxを消去して yの2次 方程式を導き、それを解いて共有点 のy座標から求めたが,yを消去し てx座標から求めてもよい。

未解決 回答数: 1
数学 高校生

答え合わせお願いします🙇‍♀️🙏💦

Ⅱ. 次の英文の空欄 ( 11 ) から ( 20 )に入る最も適切な英単語を, a. ~d.の中から 1つ選びなさい。 解答は解答用紙1枚目 (マークシート方式)の所定の解答欄にマークし なさい。 2893 000 Lego bricks. (Image source: Wikimedia Commons-CC license) Car made from Lego bricks. Lego has unveiled its first bricks made from recycled plastic bottles and ( 11 ) that it hopes to include the pieces in sets within two years. The prototype 4x2 bricks have been made from PET plastic from ( 12 ) bottles with additives to give them the strength of standard Lego parts, and are the result of three years of ( 13 ) with 250 variations of materials. It has already ( 14 ) plans to remove single-use plastic from boxes, and since 2018 has been ( 15 ) parts from bio-polyethylene (bio-PE), made from sustainably sourced sugarcane. These parts are bendy pieces, such as trees, leaves and accessories for figurines. Tim Brooks, vice-president for environmental ( 16 ) at Lego Group, said the biggest challenge was "rethinking and innovating new materials that are as ( 17 ), strong and high (18) as our existing bricks and fit with Lego elements made over the past 60 years". He added: "We're committed to playing our part in building a sustainable future for generations of children. We want our products to have a positive ( 19 ) on the planet, not just with the play they inspire, but also with the materials we use. We still have a long 20 ) we are making." way to go on our journey, but are pleased with the Hillary Osborne, "Lego develops first bricks made from recycled plastic bottles", The Guardian, 23 June, 2021. (https://www.theguardian.com/lifeandstyle/2021/jun/23/lego- develops-first-bricks-made-of-recycled-plastic-bottles) (-)

解決済み 回答数: 1